請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40639
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李源弘(Yuan-Haun Lee) | |
dc.contributor.author | Chun-Liang Feng | en |
dc.contributor.author | 馮鈞良 | zh_TW |
dc.date.accessioned | 2021-06-14T16:54:13Z | - |
dc.date.available | 2010-08-04 | |
dc.date.copyright | 2008-08-04 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-29 | |
dc.identifier.citation | 1. 林有銘, “奈米光觸媒,” 科學發展,408期,第24-31頁,2006年12月
2. 呂宗昕,吳偉宏, “奈米科技與二氧化鈦光觸媒,” 科學發展,376期,第72-77頁,2004年4月 3. 郭驊慶, “CaIn2O4光觸媒材料之製備與光催化性質研究,” 國立東華大學碩士論文 4. X. Lou, X. Jia, J. Xu, S. Liu, Q. Gao, “Hydrothermal synthesis, characterization and photocatalytic properties of Zn2SnO4 nanocrystal,” Materials Science and Engineering A 432 (2006) 221-225. 5. A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238 (1972) 37. 6. M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 20 (1995) 69-95. 7. C. Wang, X. Wang, B. Q. Xu, J. Zhao, B. Mai, P. Peng, G.. Sheng, J. Fu, “Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation,” Journal of Photochemistry and Photobiology A: Chemistry 168 (2004) 47-52. 8. M. Zhang, G.. Sheng, J. Fu, T. An, X. Wang, X. Hu, “Novel preparation of nanosized ZnO-SnO2 with high photocatalytic activity by homogeneous co-precipitation method,” Material Letters 59 (2005) 3641-3644. 9. JCPDS, PDF 74-2148. 10. http://www.uwgb.edu/DutchS/PETROLGY/Spinel%20Structure.HTM 11. W. A. Deer, R. A. Howie, J. Zussman, “An introduction to the rock-forming minerals, ” 2nd ed. (1992) p 558-569. 12. H. Zhu, D. Yang, G.. Yu, H. Zhang, D. Jin, K. Yao, “Hydrothermal Synthesis of Zn2SnO4 Nanorods in the Diameter Regime of Sub-5 nm and Their Properties,” Journal of Physical Chemistry B 110 (2006) 7631-7634. 13. A. Rong, X. P. Gao, G.. R. Li, T. Y. Yan, H. Y. Zhu, J. Q. Qu, D. Y. Song, “Hydrothermal Synthesis of Zn2SnO4 as Anode Materials for Li-Ion Battery,” Journal of Physical Chemistry B 110 (2006) 14754-14760. 14. B. Tan, E. Toman, Y. Li, Y. Wu, “Zinc Stannate (Zn2SnO4) Dye-Sensitized Solar Cells,” Journal of the American Chemical Society 129 (2007)4162-4163. 15. J. Fang, A. Huang, P. Zhu, N. Xu, J. Xie, J. Chi, S. Feng, R. Xu, M. Wu, “Hydrothermal preparation and characterization of Zn2SnO4 particles,” Materials Research Bulletin 36 (2001) 1391-1397. 16. S. Wang, Z. Yang, M. Lu, Y. Zhou, G.. Zhou, Z. Qiu, S. Wang, H. Zhang, A. Zhang, “Coprecipitation synthesis of hollow Zn2SnO4 Spheres,” Materials Letters 61 (2007) 3005-3008. 17. M. Peiteado, Y. Iglesias, J. De Frutos, J. F. Fernandez, A. C. Caballero, “Preparation of ZnO-SnO2 ceramic materials by a coprecipitation method,” Boletin De La Sociedad Española De Cerámica y Vidrio 45(3) (2006) 158-162. 18. I. Stambolova, A. Toneva, V. Blaskov, D. Radev, Ya. Tsvetanova, S. Vassilev, P. Peshev, “Prearation of nanosized spinel stannate, Zn2SnO4, from a hydroxide precursor,” Journal of Alloys and Compounds 391 (2005) L1-L4. 19. A. Kurz, K. Brakecha, J. Puetz, M. A. Aegerter, “Strategies for novel transparent conducting sol-gel oxide coatings,” Thin Solid Films 502 (2006) 212-218. 20. N. Nikolic, Z. Marinkovic, T. Sreckovic, “The influence of grinding conditions on the mechanochemical synthesis of zinc stannate,” Journal of Materials Science 39 (2004) 5239-5242. 21. M. V. Nikolic, T. Ivetic, K. M. Paraskevopoulos, K.T. Zorbas, V. Blagojevic, D. Vasiljevic-Radovic, “Far infrared reflection spectroscopy of Zn2SnO4 ceramics obtained by sintering mechanically activated ZnO-SnO2 powder mixtures,” Journal of the European Ceramic Society 27 (2007) 3727-3730. 22. Y. Iglesias, M. Peiteado, J. de Frutos, A. C. Caballero, “Current-voltage characteristic behaviour of dense Zn2SnO4-ZnO ceramics,” Journal of the European Ceramic Society 27 (2007) 3931-3933. 23. Y. Ortega, P. Fernandez, J. Piqueras, “Growth and luminescence of oriented nanoplate arrays in tin doped ZnO,” Nanotechnology 18 (2007) 115606 (4pp). 24. A. A. Al-Shahrani, S. Abboudy, A. W. Brinkman, “Absence of the Coulomb gap at the Fermi level in the variable-range hopping regime of zinc stannate polycrystalline systems,” Journal of Physics D: Applied Physics 29 (1996) 2165-2169. 25. L. Wang, X. Zhang, X. Liao, W. Yang, “A simple method to synthesize single-crystalline Zn2SnO4 (ZTO) nanowires and their photoluminescence properties,” Nanotechnology 16 (2005) 2928-2931. 26. J. X. Wang, S. S. Xie, H. J. Yuan, X. Q. Yan, D. F. Liu,Y. Gao, Z. P. Zhou, L. Song, L. F. Liu, X. W. Zhao, X.Y. Dou, W. Y. Zhou, G.. Wang, “Synthesis, structure, and photoluminescence of Zn2SnO4 single-crystal nanobelts and nanorings,” Solid State Communications 131 (2004) 435-440. 27. Y. Su, L. Zhu, L. Xu, Y. Chen, H. Xiao, Q. Zhou, Y. Feng, “Self-catalytic formation and characterization of Zn2SnO4 nanowires,” Materials Letters 61 (2007) 351-354. 28. J. W. Zhao, L. R. Qin, L. D. Zhang, “Single-crystalline Zn2SnO4 hexangular microprisms : Fabrication, characterization and optical properties,” Solid State Communications 141 (2007) 663-666. 29. J. X. Wang, S. S. Xie, Y. Gao, X. Q. Yan, D. F. Liu, H. J. Yuan, Z. P. Zhou, L. Song, L. F. Liu, W. Y. Zhou, G.. Wang, “Growth and characterization of axially periodic Zn2SnO4 (ZTO) nanostructures,” Journal of Crystal Growth 267 (2004) 177-183. 30. H. Chen, J. Wang, H. Yu, H. Yang, S. Xie, J. Li, “Transmission Electron Microscopy Study of Pseudoperiodically Twinned Zn2SnO4 nanowires,” Journal of Physical Chemistry B 109 (2005) 2573-2577. 31. J. H. Ko, I. H. Kim, D. Kim, K. S. Lee, T. S. Lee, B. Cheong, W. M. Kim, “Transparent and conducting Zn-Sn-O thin films prepared by combinatorial approach,” Applied Surface Science 253 (2007) 7398-7403. 32. J. H. Ko, I. H. Kim, D. Kim, K. S. Lee, T. S. Lee, J. H. Jeong, B. Cheong, Y. J. Baik, W. M. Kim, “Effects of ZnO addition on electrical and structural properties of amorphous SnO2 thin films,” Thin Solid Films 494 (2006) 42-46 33. Y. Hayashi, K. Kondo, K. Murai, T. Moriga, I. Nakabayashi, H. Fukumoto, K. Tominaga, “ZnO-SnO2 transparent conductive films deposited by opposed target sputtering system of ZnO and SnO2 targets,” Vacuum 74 (2004) 607-611. 34. D. L. Young, H. Moutinho, Y. Yan, T. J. Coutts, “Growth and characterization of radio frequency magnetron sputter-deposited zinc stannate, Zn2SnO4, thin films,” Journal of Applied Physics 92 (1) (2002) 310-319. 35. J. Zeng, M.D. Xin, K.W. Li, H. Wang, H. Yan, W.J. Zhang, “Transformation Process and Photocatalytic Activities of Hydrothermally Synthesized Zn2SnO4 Nanocrystals,” Journal of Physical Chemistry C 112 (2008) 4159-4167. 36. C. Wang, X.M. Wang, “Synthesis, characterization and Photocatalytic property of nano-sized Zn2SnO4,” Journal of Materials Science 37 (2002) 2989-2996. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40639 | - |
dc.description.abstract | 光觸媒產業近年來掀起一股熱潮,以二氧化鈦材料為主的光觸媒研究與開發已經有一段時間,除了本身具有快速帶電電荷之再結合和較低的界面間電荷遷移等缺點仍需改善,且對於其他光觸媒材料的發展並不成熟,因此在光觸媒材料的研發上更需要朝多元的方向來突破。氧化鋅錫(Zn2SnO4,ZTO)材料不僅具有很好的光電特性,而且其熱穩定性與化學穩定性佳,因此在光觸媒產業與半導體產業中甚具開創性,然而相關研究非常有限,而水熱法長晶可以有效將氧化鋅錫材料奈米化,使之在奈米尺寸下能夠呈現更好的光觸媒及光電特性。
本研究利用水熱法,將含有鋅和錫離子之水溶液與鹼性礦化劑(NaOH、Na2CO3),混合於密封壓力釜中,在低溫與高壓下使水溶液達到超臨界狀態,讓鋅與錫粒子間可以充分交互作用,並形成高結晶性奈米級氧化鋅錫粉末。在不同水熱處理下控制長晶條件,實驗結果發現,經過250oC、48h之水熱條件下可達到結晶性最佳的奈米顆粒,由拉曼光譜得知ZTO屬於尖晶石結構(spinel structure),其中Na2CO3礦化劑系統之ZTO為略小於50nm之不規則顆粒狀,對於紫外光光吸收與光觸媒實驗效果良好,與商用P25 TiO2 十分接近。 | zh_TW |
dc.description.abstract | Due to the wide applications of green technology, photocatalysts has become popular in recent years. Although much attentions of TiO2 has been paid since ever, TiO2 still has some disadvantages (e.g., fast charge-carrier recombination and low interfacial charge-transfer rate) needed to be improved. Due to this, to develop other photocatalysts for myriads of applications is a priority issue to industry. Recent findings indicated that ZTO has significant potential to be used for applications in photocatalysts and semiconductor due to its attractive optical and electric properties, and good thermal and chemical stability. However, related studies for these characteristics were seldom to be mentioned. As ZTO can be effectively scale down in nano level by hydrothermal method, it could express better photoelectric property than conventional materials.
Here, we used a hydrothermal method applied under high pressure to combine zinc ion and tin ion solution with mineralizers (NaOH, Na2CO3) into a sealed autoclave. After that, the solution was heated to supercritical condition to form high nano-crystalline ZTO powder via interactions with zinc and tin particles. By different hydrothermal treatment, our findings showed that high-crystalline ZTO nanoparticles could be formed at 250oC for 48 hours. According to Raman analysis, this ZTO belongs to spinel structure. The UV-Visible absorption spectrum and photocatalytic investigations exhibited that in the Na2CO3 system ZTO was shown in particle size less than 50 nm and express an excellent performance of photocatalytic activity in comparison to commercial P25 TiO2. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T16:54:13Z (GMT). No. of bitstreams: 1 ntu-97-R95527011-1.pdf: 3396559 bytes, checksum: 7faa212c23852fb1028dcc55137d8cc9 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 摘要…………………………………………………………………………..I
Abstract……………………………………………………………..……….II 目錄…………………………………………………………………………IV 圖目錄………………………………………………………………………VI 表目錄…………………………………………………………………........XI 第一章 緒論…………………………………………………………………1 1-1 前言……………………………………………………………..….1 1-2 研究動機………………………………………………………..….2 第二章 理論基礎與文獻回顧……………………………………………..3 2-1 光觸媒……………………………………………………..……….3 2-1-1 光觸媒簡介……………………………………………….3 2-1-2 光觸媒原理與應用…………………………………...…..4 2-1-3 光觸媒材料………………………………………….……8 2-2 文獻回顧………………………………………………..………...11 2-2-1 光觸媒文獻回顧……………………………………...….11 2-2-2 ZTO相關文獻…………………………………...………13 2-2-3 ZTO之結晶相…………………………………...……....18 2-3 ZTO之製備方法……………………………………....……..….20 2-3-1 水熱法…………………………………………………..…21 2-3-2 共沉法………………………………………………......…26 2-3-3 溶膠凝膠法…………………………………………...…...28 2-3-4 熱蒸鍍法………………………………………………......31 2-3-5 高溫固態法…………………………………………….….33 2-3-6 射頻磁控濺鍍法………………………………………......37 第三章 實驗方法與步驟…………………………………………………...41 3-1 實驗設備與分析設備……………………………………...…......41 3-1-1 壓力釜……………………………………………………..42 3-2 實驗藥品……………………………………………………….…42 3-3 實驗方法………………………………………………………….43 3-3-1 水熱法合成氧化鋅錫之製備……………………...……...43 3-3-2 氧化鋅錫粉末分析方法………………………...………...45 3-3-2-1 X-ray 繞射分析(XRD)……………………...…..45 3-3-2-2 掃描式電子顯微鏡(SEM)………………...………45 3-3-2-3 X光能量散佈光譜分析(EDS)…………...……...45 3-3-2-4 穿透式電子顯微鏡(TEM)…………...……………45 3-3-2-5 拉曼光譜分析(Raman Spectra Analysis).………....46 3-3-2-6 光觸媒特性分析…………………………………..48 3-3-2-7 紫外光-可見光吸收光譜分析…………………....51 第四章 結果與討論……………………………………………………...…52 4-1 前驅物分析………………………………………………….........52 4-2 XRD繞射分析…………………………………………...………..56 4-2-1 NaOH礦化劑系統………………………………...…….56 4-2-2 Na2CO3 礦化劑系統……………………………...……..62 4-3 穿透式電子顯微鏡(TEM)分析……………………...…………...65 4-3-1 NaOH礦化劑系統…………………………..…………..65 4-3-2 Na2CO3礦化劑系統…………………………...………...70 4-4 拉曼光譜分析…………………………………………………….74 4-4-1 NaOH礦化劑系統………………………………………74 4-4-2 Na2CO3礦化劑系統………………………………...…...74 4-5 光觸媒活性分析……………………………………………..…...77 4-6 紫外光-可見光吸收光譜分析………………………………..….80 第五章 結論………………………………………………………………..82 參考文獻……………………………………………………………………84 | |
dc.language.iso | zh-TW | |
dc.title | 使用鹼性礦化劑進行水熱法合成高結晶性奈米氧化鋅錫特性之研究 | zh_TW |
dc.title | Characteristics of high crystalline zinc stannate Zn2SnO4 nanoparticles by hydrothermal method with basic mineralizer | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 吳玉祥(Yu-Shiang Wu) | |
dc.contributor.oralexamcommittee | 陳博彥,張文固,林峰輝 | |
dc.subject.keyword | 氧化鋅錫,光觸媒,水熱法,礦化劑,尖晶石, | zh_TW |
dc.subject.keyword | ZTO,hotocatalyst,hydrothermal method,mineralizer,spinel, | en |
dc.relation.page | 87 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-30 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 3.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。