請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40631完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳炳宇(Bing-Yu Chen) | |
| dc.contributor.author | Yi-Hua Wang | en |
| dc.contributor.author | 王怡華 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:53:56Z | - |
| dc.date.available | 2013-08-22 | |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-12 | |
| dc.identifier.citation | [1] M. Alexa, D. Cohen-Or, and D. Levin. As-rigid-as-possible shape interpolation. In
ACM SIGGRAPH 2000 Conference Proceedings, pages 157–164, 2000. [2] D. Baraff and A. Witkin. Large steps in cloth simulation. In ACM SIGGRAPH 1998 Conference Proceedings, pages 43–54, 1998. [3] J. Barbiˇc. Computer graphics research code: 3D mass-spring system, 2009. http: //www-bcf.usc.edu/˜jbarbic/code/. [4] J. Barbiˇc, M. da Silva, and J. Popovi′c. Deformable object animation using reduced optimal control. ACM Transactions on Graphics, 28(3):53:1–53:9, 2009. (SIG- GRAPH 2009 Conference Proceedings). [5] W. Baxter, P. Barla, and K. Anjyo. Rigid shape interpolation using normal equations. In Proceedings of the 6th International Symposium on Non-Photorealistic Animation and Rendering, pages 59–64, 2008. [6] N. Bell and M. Garland. Cusp: Generic parallel algorithms for sparse matrix and graph computations, 2010. http://cusp-library.googlecode.com. [7] J. Bloomenthal. Medial-based vertex deformation. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 147– 151, 2002. [8] G. Borshukov. Making of the superpunch. In ACM SIGGRAPH 2005 Courses, pages 19:1–19:3, 2005. [9] J. E. Chadwick, D. R. Haumann, and R. E. Parent. Layered construction for de- formable animated characters. ACM SIGGRAPH Computer Graphics, 23(4):243– 252, 1989. (SIGGRAPH 1989 Conference Proceedings). [10] K.-J. Choi and H.-S. Ko. Stable but responsive cloth. In ACM SIGGRAPH 2002 Conference Proceedings, pages 604–611, 2002. [11] H.-K. Chu and T.-Y. Lee. Multiresolution mean shift clustering algorithm for shape interpolation. IEEE Transactions on Visualization and Computer Graphics, 15(5):853–866, 2009. [12] K. G. Der, R. W. Sumner, and J. Popovi′c. Inverse kinematics for reduced deformable models. ACM Transactions on Graphics, 25(3):1174–1179, 2006. (SIGGRAPH 2006 Conference Proceedings). [13] M. Desbrun, P. Schr‥oder, and A. Barr. Interactive animation of structured deformable objects. In Proceedings of the Graphics Interface 1999, pages 1–8, 1999. [14] T. Igarashi, T. Moscovich, and J. F. Hughes. As-rigid-as-possible shape manipulation. ACM Transactions on Graphics, 24(3):1134–1141, 2005. (SIGGRAPH 2005 Conference Proceedings). [15] M. Kilian, N. J. Mitra, and H. Pottmann. Geometric modeling in shape space. ACM Transactions on Graphics, 26(3):64:1–64:8, 2007. (SIGGRAPH 2007 Conference Proceedings). [16] R. Kondo, T. Kanai, and K.-i. Anjyo. Directable animation of elastic objects. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 127–134, 2005. [17] Y. Lee, D. Terzopoulos, and K. Waters. Realistic modeling for facial animation. In ACM SIGGRAPH 1995 Conference Proceedings, pages 55–62, 1995. [18] J. P. Lewis and K.-i. Anjyo. Direct manipulation blendshapes. IEEE Computer Graphics and Applications, 30(4):42–50, 2010. [19] J. P. Lewis, M. Cordner, and N. Fong. Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In ACM SIGGRAPH 2000 Conference Proceedings, pages 165–172, 2000. [20] A. Liu, F. Tendick, K. Cleary, and C. Kaufmann. A survey of surgical simulation: applications, technology, and education. Presence: Teleoperators and Virtual Environments, 12(6):599–614, 2003. [21] G. S. P. Miller. The motion dynamics of snakes and worms. ACM SIGGRAPH Computer Graphics, 22(4):169–173, 1988. (SIGGRAPH 1988 Conference Proceedings). [22] L. P. Nedel and D. Thalmann. Real time muscle deformations using mass-spring systems. In Proceedings of the Computer Graphics International 1998, pages 156– 165, 1998. [23] T. Popa, D. Julius, and A. Sheffer. Material-aware mesh deformations. In Proceedings of the 2006 IEEE International Conference on Shape Modeling and Applications, page 22, 2006. [24] M. H. Raibert and J. K. Hodgins. Animation of dynamic legged locomotion. ACM SIGGRAPH Computer Graphics, 25(4):349–358, 1991. (SIGGRAPH 1991 Conference Proceedings). [25] D. Rohmer, S. Hahmann, and M.-P. Cani. Exact volume preserving skinning with shape control. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Sympo- sium on Computer Animation, pages 83–92, 2009. [26] O. Schenk, M. Bollhofer, and R. A. Roemer. On large-scale diagonalization techniques for the Anderson model of localization. SIAM Journal on Scientific Computing, 28(3):963–983, 2006. [27] O. Schenk, A. W‥achter, and M. Hagemann. Matching-based preprocessing algo- rithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization. In Journal of Computational Optimization and Applications, volume 36, pages 321–341, 2007. [28] H. Si and K. G‥artner. Meshing piecewise linear complexes by constrained delaunay tetrahedralizations. In Proceedings of the 14th International Meshing Roundtable, pages 147–163, 2005. [29] J. Teran, E. Sifakis, G. Irving, and R. Fedkiw. Robust quasistatic finite elements and flesh simulation. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 181–190, 2005. [30] X. Tu and D. Terzopoulos. Artificial fishes: physics, locomotion, perception, behavior. In ACM SIGGRAPH 1994 Conference Proceedings, pages 43–50, 1994. [31] G. van den Bergen. SOLID: Software library for interference detection, 2004. http://www.win.tue.nl/˜gino/solid/. [32] O. Weber, O. Sorkine, Y. Lipman, and C. Gotsman. Context-aware skeletal shape deformation. Computer Graphics Forum, 26(3), 2007. (Eurographics 2007 Conference Proceedings). [33] T. Winkler, J. Drieseberg, M. Alexa, and K. Hormann. Multi-scale geometry interpolation. Computer Graphics Forum, 29(2):309–318, 2010. (Eurographics 2010 Conference Proceedings). [34] H.-B. Yan, S. Hu, R. R. Martin, and Y.-L. Yang. Shape deformation using a skeleton to drive simplex transformations. IEEE Transactions on Visualization and Computer Graphics, 14(3):693–706, 2008. [35] S. Yoshizawa, A. G. Belyaev, and H.-P. Seidel. Free-form skeleton-driven mesh deformations. In Proceedings of the 8th ACM Symposium on Solid Modeling and Applications, pages 247–253, 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40631 | - |
| dc.description.abstract | 本論文提出了一種利用質量彈簧系統來模擬模型形狀內插變化的
新方法。將質量彈簧系統應用來模擬物體的移動與變形,在動畫模擬 的領域裡相當常見,尤其是在模擬粒子、衣物,以及紡織物等物體的 時候更是被大量使用。 而在混和形變模型的領域中,要找到兩個物體 中間的形狀,除了最直覺的線性內差以外還有許多其他方法,但至今 尚未有人使用質量彈簧系統這個方法來模擬中間的形狀。我們分別將 來源模型與目標模型建構出有一致性的兩個質量彈簧系統(即頂點、 邊以及面都具有相同的拓樸結構)。要產生一個中間的形狀,我們首 先要創建一個新的質量彈簧系統,其結構也和來源模型與目標模型一 致, 接著根據不同的權重,將相對應的彈簧做線性內插,得到一組新 的彈簧靜長度。再通過計算,找出基於這些內插後產生的彈簧靜長度 在到達平衡時候的系統狀態。經由類似的步驟,此方法也適用於同時 融合多形狀。此外,我們結合適當的碰撞偵測與處理,使得中間產生 出的模型可以與其他的物體做互動。 | zh_TW |
| dc.description.abstract | We present a new technique for physically-plausible shape interpolation by blending the rest lengths of springs in a mass-spring system. The proposed method begins by constructing two consistent mass-spring systems (i.e., with vertex-wise correspondence and the same topology) for the input source and target shapes, respectively, and setting the two systems as in their static states by setting the rest length of each spring as its original edge length.
To create an intermediate shape, we generate a new mass-spring system that is consistent with the source and target ones and set its spring rest lengths by a linearly interpolation between them based on an interpolation factor α ∈ [0,1]. The new shape is then synthesized by computing the equilibrium of the new system given the interpolated rest lengths. Blending multiple shapes is also applicable through an analogous fashion. In addition, by combining proper collision detection and handling with the mass-spring system, the blendshape model is able to interact with other objects. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:53:56Z (GMT). No. of bitstreams: 1 ntu-100-R98922032-1.pdf: 8611181 bytes, checksum: 9a65faf7e70de11150bf2a420100dedf (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Related Work 5 2.1 Shape Interpolation and Deformation . . . . . . . . . . . . . . . . . . . . . 5 2.2 Mass-Spring Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Rest Length Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Spring-Space Interpolation 9 3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Building Mass-Spring Structure . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Structure, Bending and Internal Springs . . . . . . . . . . . . . . . . . . . . 13 3.4 Solving Intermediate Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.6 Spring Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4 Applications 19 4.1 Blending Multiple Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Physical Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5 Discussion 25 5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6 Conclusion and Future Work 29 Bibliography 31 Appendix A The Global Stiffness (Jacobian) 37 | |
| dc.language.iso | zh-TW | |
| dc.subject | 彈簧系統 | zh_TW |
| dc.subject | 混合形變模型 | zh_TW |
| dc.subject | 彈簧靜長度 | zh_TW |
| dc.subject | Mass-spring system | en |
| dc.subject | Blendshape | en |
| dc.subject | Edge-length interpolation | en |
| dc.title | 具有物理互動特性之混合形變模型 | zh_TW |
| dc.title | Blendshape in Spring-Space | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊傳凱(Chuan-kai Yang),張鈞法(Chun-Fa Chang) | |
| dc.subject.keyword | 混合形變模型,彈簧系統,彈簧靜長度, | zh_TW |
| dc.subject.keyword | Blendshape,Mass-spring system,Edge-length interpolation, | en |
| dc.relation.page | 45 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-12 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 8.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
