Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40631
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳炳宇(Bing-Yu Chen)
dc.contributor.authorYi-Hua Wangen
dc.contributor.author王怡華zh_TW
dc.date.accessioned2021-06-14T16:53:56Z-
dc.date.available2013-08-22
dc.date.copyright2011-08-22
dc.date.issued2011
dc.date.submitted2011-08-12
dc.identifier.citation[1] M. Alexa, D. Cohen-Or, and D. Levin. As-rigid-as-possible shape interpolation. In
ACM SIGGRAPH 2000 Conference Proceedings, pages 157–164, 2000.
[2] D. Baraff and A. Witkin. Large steps in cloth simulation. In ACM SIGGRAPH 1998
Conference Proceedings, pages 43–54, 1998.
[3] J. Barbiˇc. Computer graphics research code: 3D mass-spring system, 2009. http:
//www-bcf.usc.edu/˜jbarbic/code/.
[4] J. Barbiˇc, M. da Silva, and J. Popovi′c. Deformable object animation using reduced
optimal control. ACM Transactions on Graphics, 28(3):53:1–53:9, 2009. (SIG-
GRAPH 2009 Conference Proceedings).
[5] W. Baxter, P. Barla, and K. Anjyo. Rigid shape interpolation using normal equations.
In Proceedings of the 6th International Symposium on Non-Photorealistic Animation
and Rendering, pages 59–64, 2008.
[6] N. Bell and M. Garland. Cusp: Generic parallel algorithms for sparse matrix and
graph computations, 2010. http://cusp-library.googlecode.com.
[7] J. Bloomenthal. Medial-based vertex deformation. In Proceedings of the 2002
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 147–
151, 2002.
[8] G. Borshukov. Making of the superpunch. In ACM SIGGRAPH 2005 Courses, pages
19:1–19:3, 2005.
[9] J. E. Chadwick, D. R. Haumann, and R. E. Parent. Layered construction for de-
formable animated characters. ACM SIGGRAPH Computer Graphics, 23(4):243–
252, 1989. (SIGGRAPH 1989 Conference Proceedings).
[10] K.-J. Choi and H.-S. Ko. Stable but responsive cloth. In ACM SIGGRAPH 2002
Conference Proceedings, pages 604–611, 2002.
[11] H.-K. Chu and T.-Y. Lee. Multiresolution mean shift clustering algorithm for
shape interpolation. IEEE Transactions on Visualization and Computer Graphics,
15(5):853–866, 2009.
[12] K. G. Der, R. W. Sumner, and J. Popovi′c. Inverse kinematics for reduced deformable
models. ACM Transactions on Graphics, 25(3):1174–1179, 2006. (SIGGRAPH
2006 Conference Proceedings).
[13] M. Desbrun, P. Schr‥oder, and A. Barr. Interactive animation of structured deformable objects. In Proceedings of the Graphics Interface 1999, pages 1–8, 1999.
[14] T. Igarashi, T. Moscovich, and J. F. Hughes. As-rigid-as-possible shape manipulation. ACM Transactions on Graphics, 24(3):1134–1141, 2005. (SIGGRAPH 2005
Conference Proceedings).
[15] M. Kilian, N. J. Mitra, and H. Pottmann. Geometric modeling in shape space. ACM
Transactions on Graphics, 26(3):64:1–64:8, 2007. (SIGGRAPH 2007 Conference
Proceedings).
[16] R. Kondo, T. Kanai, and K.-i. Anjyo. Directable animation of elastic objects. In
Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 127–134, 2005.
[17] Y. Lee, D. Terzopoulos, and K. Waters. Realistic modeling for facial animation. In
ACM SIGGRAPH 1995 Conference Proceedings, pages 55–62, 1995.
[18] J. P. Lewis and K.-i. Anjyo. Direct manipulation blendshapes. IEEE Computer
Graphics and Applications, 30(4):42–50, 2010.
[19] J. P. Lewis, M. Cordner, and N. Fong. Pose space deformation: a unified approach
to shape interpolation and skeleton-driven deformation. In ACM SIGGRAPH 2000
Conference Proceedings, pages 165–172, 2000.
[20] A. Liu, F. Tendick, K. Cleary, and C. Kaufmann. A survey of surgical simulation:
applications, technology, and education. Presence: Teleoperators and Virtual Environments, 12(6):599–614, 2003.
[21] G. S. P. Miller. The motion dynamics of snakes and worms. ACM SIGGRAPH Computer Graphics, 22(4):169–173, 1988. (SIGGRAPH 1988 Conference Proceedings).
[22] L. P. Nedel and D. Thalmann. Real time muscle deformations using mass-spring
systems. In Proceedings of the Computer Graphics International 1998, pages 156–
165, 1998.
[23] T. Popa, D. Julius, and A. Sheffer. Material-aware mesh deformations. In Proceedings of the 2006 IEEE International Conference on Shape Modeling and Applications, page 22, 2006.
[24] M. H. Raibert and J. K. Hodgins. Animation of dynamic legged locomotion. ACM
SIGGRAPH Computer Graphics, 25(4):349–358, 1991. (SIGGRAPH 1991 Conference Proceedings).
[25] D. Rohmer, S. Hahmann, and M.-P. Cani. Exact volume preserving skinning with
shape control. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation, pages 83–92, 2009.
[26] O. Schenk, M. Bollhofer, and R. A. Roemer. On large-scale diagonalization techniques for the Anderson model of localization. SIAM Journal on Scientific Computing, 28(3):963–983, 2006.
[27] O. Schenk, A. W‥achter, and M. Hagemann. Matching-based preprocessing algo-
rithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization. In Journal of Computational Optimization and Applications,
volume 36, pages 321–341, 2007.
[28] H. Si and K. G‥artner. Meshing piecewise linear complexes by constrained delaunay
tetrahedralizations. In Proceedings of the 14th International Meshing Roundtable,
pages 147–163, 2005.
[29] J. Teran, E. Sifakis, G. Irving, and R. Fedkiw. Robust quasistatic finite elements
and flesh simulation. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pages 181–190, 2005.
[30] X. Tu and D. Terzopoulos. Artificial fishes: physics, locomotion, perception, behavior. In ACM SIGGRAPH 1994 Conference Proceedings, pages 43–50, 1994.
[31] G. van den Bergen. SOLID: Software library for interference detection, 2004.
http://www.win.tue.nl/˜gino/solid/.
[32] O. Weber, O. Sorkine, Y. Lipman, and C. Gotsman. Context-aware skeletal shape
deformation. Computer Graphics Forum, 26(3), 2007. (Eurographics 2007 Conference Proceedings).
[33] T. Winkler, J. Drieseberg, M. Alexa, and K. Hormann. Multi-scale geometry interpolation. Computer Graphics Forum, 29(2):309–318, 2010. (Eurographics 2010
Conference Proceedings).
[34] H.-B. Yan, S. Hu, R. R. Martin, and Y.-L. Yang. Shape deformation using a skeleton
to drive simplex transformations. IEEE Transactions on Visualization and Computer
Graphics, 14(3):693–706, 2008.
[35] S. Yoshizawa, A. G. Belyaev, and H.-P. Seidel. Free-form skeleton-driven mesh
deformations. In Proceedings of the 8th ACM Symposium on Solid Modeling and
Applications, pages 247–253, 2003.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40631-
dc.description.abstract本論文提出了一種利用質量彈簧系統來模擬模型形狀內插變化的
新方法。將質量彈簧系統應用來模擬物體的移動與變形,在動畫模擬
的領域裡相當常見,尤其是在模擬粒子、衣物,以及紡織物等物體的
時候更是被大量使用。 而在混和形變模型的領域中,要找到兩個物體
中間的形狀,除了最直覺的線性內差以外還有許多其他方法,但至今
尚未有人使用質量彈簧系統這個方法來模擬中間的形狀。我們分別將
來源模型與目標模型建構出有一致性的兩個質量彈簧系統(即頂點、
邊以及面都具有相同的拓樸結構)。要產生一個中間的形狀,我們首
先要創建一個新的質量彈簧系統,其結構也和來源模型與目標模型一
致, 接著根據不同的權重,將相對應的彈簧做線性內插,得到一組新
的彈簧靜長度。再通過計算,找出基於這些內插後產生的彈簧靜長度
在到達平衡時候的系統狀態。經由類似的步驟,此方法也適用於同時
融合多形狀。此外,我們結合適當的碰撞偵測與處理,使得中間產生
出的模型可以與其他的物體做互動。
zh_TW
dc.description.abstractWe present a new technique for physically-plausible shape interpolation by blending the rest lengths of springs in a mass-spring system. The proposed method begins by constructing two consistent mass-spring systems (i.e., with vertex-wise correspondence and the same topology) for the input source and target shapes, respectively, and setting the two systems as in their static states by setting the rest length of each spring as its original edge length.
To create an intermediate shape, we generate a new mass-spring system that is consistent with the source and target ones and set its spring rest lengths by a linearly interpolation between them based on an interpolation factor α ∈ [0,1].
The new shape is then synthesized by computing the equilibrium of the new system given the interpolated rest lengths. Blending multiple shapes is also applicable through an analogous fashion. In addition, by combining proper collision detection and handling with the mass-spring system, the blendshape model is able to interact with other objects.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:53:56Z (GMT). No. of bitstreams: 1
ntu-100-R98922032-1.pdf: 8611181 bytes, checksum: 9a65faf7e70de11150bf2a420100dedf (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Related Work 5
2.1 Shape Interpolation and Deformation . . . . . . . . . . . . . . . . . . . . . 5
2.2 Mass-Spring Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Rest Length Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Spring-Space Interpolation 9
3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Building Mass-Spring Structure . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Structure, Bending and Internal Springs . . . . . . . . . . . . . . . . . . . . 13
3.4 Solving Intermediate Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Spring Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 Applications 19
4.1 Blending Multiple Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Physical Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5 Discussion 25
5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6 Conclusion and Future Work 29
Bibliography 31
Appendix A The Global Stiffness (Jacobian) 37
dc.language.isozh-TW
dc.subject彈簧系統zh_TW
dc.subject混合形變模型zh_TW
dc.subject彈簧靜長度zh_TW
dc.subjectMass-spring systemen
dc.subjectBlendshapeen
dc.subjectEdge-length interpolationen
dc.title具有物理互動特性之混合形變模型zh_TW
dc.titleBlendshape in Spring-Spaceen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊傳凱(Chuan-kai Yang),張鈞法(Chun-Fa Chang)
dc.subject.keyword混合形變模型,彈簧系統,彈簧靜長度,zh_TW
dc.subject.keywordBlendshape,Mass-spring system,Edge-length interpolation,en
dc.relation.page45
dc.rights.note有償授權
dc.date.accepted2011-08-12
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
8.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved