請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40603完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳秀熙(Hsiu-Hsi Chen),張淑惠(Hsu-Hui Chang) | |
| dc.contributor.author | Yu-Wen Hsu | en |
| dc.contributor.author | 許郁雯 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:52:54Z | - |
| dc.date.available | 2008-08-08 | |
| dc.date.copyright | 2008-08-08 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-30 | |
| dc.identifier.citation | Chen,J.S.,Prorok,P.C.. Lead time estimation in a
controlled screening.American Journal of Epidemiology.1983 : 118,740-751. Chen THH, Duffy SW, Day NE. Markov chain models for progression of breast cancer. Part I: tumour attributes and the preclinical screen-detectable phase. Journal of Epidemiology and Biostatistics 1997a; 2: 9-23. Chen THH. Duffy SW, Tabar L, Day NE. Markov chain models for progression of breast cancer. Part II: prediction of outcomes for different screening regimes. Journal of Epidemiology and Biostatistics 1997b; 2: 25-35. Chen THH, Kuo HS, Yen MF, Lai MS, Tabar L, Duffy SW. Estimation of sojourn time in chronic disease screening without data on interval cases. Biometrics 2000; 56(1): 167-172. Chen THH, Duffy SW, Tabar L. A Markov chain method to estimate the tumour progression rate from preclinical to clinical phase, sensitivity and positive predictive value for mammography in breast cancer screening. The Statistician 1996; 45: 307-317. Chen THH, Duffy SW, Tabar L. A mover-stayer mixture of Markov chain models for the assessment of dedifferentiation and tumour progression of breast cancer. Journal of Applied Statistics 1997; 24: 265-278. Chiu YH,Wu SC,Tseng CD,Yen MF,Chen THH et.al. Progression of pre-hypertension,stage1 and stage2 hypertension (JNC7):a population-based study in Keelung,Taiwan (Keelung Community-based integrated screening No.9) Journal of Hypertension 2006,24:821-828 Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, et al., and the National High Blood Pressure Education Program Coordinating Committee. The seventh report of the Joint National Committee on Prevention, Dectection, Evaluation, and Treatment of High Blood Pressure. The JNC 7 Report. JAMA 2003; 289:2560-2572. Chun-Ru Chien,Chen THH. Mean Sojourn Time and effectiveness of mortality reduction for lung cancer screening with computed tomography. Int. J. Cancer 2008:122,2594-2599 Cox,D.R. and Miller,J.D. The theory of stochastic processes. Chapman & Hall:London,1965. Day,N.E.,Walter,S.D..Simplified models of screening for chronic disease:estimation procedures from mass screening programmes.Biometrics 1984:43,1-56. David Collett. Modeling binary data(2nd edition). Modelling survival data in medical research(2nd edition). Duffy SW, Chen THH, Tabar L, Day NE. Estimation of mean sojourn time in breast cancer screening using a Markov chain model of both entry and exit from the preclinical detectable phase. Statistics in Medicine.1995; 14: 1531- 1543. Giorgio Segre. The sojourn time and its prospective use in pharmacology. Journal of Pharmacokinetics and Biopharmaceutics 1988 : 16,no.6,657-666. Hsieh HJ, Chen THH ,Chang SH. Assessing chronic disease progression using non-homogenous exponential regression Markov models. Statistics in Medicine. 2002; 21: 3369-82. Jane C.Lindsey,Louise M.Ryan.A three-state multiplicative model for rodent tumorigenicity experiments.Appl.Statist. 1993 : 42(2),283-300. Kalbfleish,J.D. and Lawless,J.F. The analysis of panel data under a Markov assumption.Journal of the American Statistical Association,1985;80:863-871. Kuo HS, Chang HJ, Chou P, Teng L, Chen THH. A Markov chain model to assess the efficacy of screening for non- insulin dependent diabetes mellitus (NIDDM). International Journal of Epidemiology 1999; 28: 233-240. Lindsey JC, Ryan LM. A Three-State Multiplicative Model for Rodent Tumorigenicity Experiments. Appl.Statist. 1993;No.2, pp.283-300 Liu WJ, Lee LT, Yen MF, Tung TH, Williams R, Duffy SW, Chen THH. Assessing progression and efficacy of treatment for diabetic retinopathy following the proliferative pathway to blindness: implication for diabetic retinopathy screening in Taiwan. Diabetic Medicine. 2003;20(9):727-33. Paci,E.,Duffy,S.W. Modelling the analysis of breast cancer screening programmes:sensitivity,lead time and predictive value in the Florence District Programme.Int.Journal of cancer.1991:20,852-858. Shapiro,S.A.M.,Goldberg,J.D.,Hutchison,G.B.. Lead time in breast cancer detection and implicationfor periodicity of screening. American Journal of Epidemiology.1974:100,357-366. Wong JM, Yen MF, Lai MS, Duffy SW, Smith RA, Chen THH. Progression rates of colorectal cancer by Dukes’ stage in a high-risk group: analysis of selective colorectal cancer screening. Cancer Journal. 2004;10:160-9. Wu HM, Nuvinen A, Yen AMF, Hakama M, Walter SD, Chen THH. Stochastic Model for Survival of Early Prostate Cancer with Adjustment for the Lead-time-, Length-bias, and Overdiagnosis : An Illustration with Finnish Population- based Screening Trial. Stat Med 2008 (submitted). Wu HM, Yen MF, Chen THH. SAS macro program for non- homogeneous Markov process in modeling multi-state disease progression. Computer Methods and Programs in Biomedicine. 2004;75:95-105. Yen MF, Chen THH, HS Kuo, Lai MS, Chang KJ. A Markov Chain Model to Assess a Multi-centered Screening Project for Breast Cancer in Taiwan. Chin J Public Health 1999; 18: 95-104. Zelen M.,Feinleib M. On the theory of screening for chronic disease. Biometrics.1969:56,601-614. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40603 | - |
| dc.description.abstract | 目前連續時間馬可夫過程模式已廣泛應用於癌症及慢性病病程演進之探討,當中感興趣的是估計各階段病程轉移至下階段前的平均滯留時間(Mean Sojourn Time,MST),由於在求算平均滯留時間中需要運用階段間的轉移機率估計式,但往往在遭遇病程階段數目較多或具可逆復返現象情況下,在求解轉移機率時可能會因為積分過程繁雜難以操作或可逆過程下無法求得轉移機率的封閉解(closed form)。因此,本研究首先利用數學上拉普拉斯轉換方式(The Laplace Transform)簡化求解轉移機率估計式的微分與積分過程,進而運用拉普拉斯轉換性質中的微分(the time-domain differentiation)及指數階平移(the exponential scaling)兩種性質來求解階段的平均滯留時間。此外,為說明求解轉移過程中的參數而引入兩個實例,一個是以五階段Dukes’病程分期的大腸直腸癌篩檢資料為例;另一個是考慮多階段分期的高血壓篩檢資料,其中更進一步討論抽菸及吃檳榔的個體異質性對病程的影響。 在大腸直腸癌前進式病程中估計臨床症前期平均滯留時間,以三階段模式為例,結果顯示從臨床症前期到臨床期需歷時2.9346年;當改成五階段模式時,結果為3.1535年,兩種模式結果僅相差0.2189年。而在可逆過程模式的高血壓例子中,當使用三階段模式求算高血壓前期的平均滯留期時間,估計結果為6.7719年;而改以四階段可逆模式假設下,估計結果為6.7659年,顯示兩者結果相近。此外,並以指數迴歸模式來考慮僅抽菸及吃檳榔兩種變項對於高血壓病程的影響,結果發現在兩種模式中,吃檳榔習慣對於高血壓前期回復至正常狀態具有顯著影響力;惟在四階段模式中,抽菸會影響高血壓病程從第一期發展到第二期,而吃檳榔對於正常與高血壓前期階段間的往返皆具有顯著影響。 本研究主要貢獻在證明以拉普拉斯轉換方法應用於多階段馬可夫過程中來求解階段間轉移機率及平均滯留時間是相當具效益的。而估計出的平均滯留時間可作為描述慢性病及癌症自然病程發展的重要指標。未來在這個方法上可進一步將原本均質性過程(Homogeneous)的假設推廣至非均質性過程(Non-homogeneous)的假設條件下,並同時考量時間相依性變項。 | zh_TW |
| dc.description.abstract | While a continuous-time Markov process is applied to modeling cancer or chronic disease progression, the estimation of mean sojourn time (MST) is often intractable because transition probabilities, particularly with a number of states and regression states, may involve the complexity of integration and have no closed form. We first apply Laplace transform to simplify the differential and integral processes of deriving transition probability. We then exploit the properties of the time-domain differentiation and exponential scaling of the Laplace transform to estimate mean sojourn time (MST). Two practical examples are demonstrated by using data from colorectal cancer screening, on which the estimation of transition parameters underpinning five-state Markov model with Dukes’ state is based, and data on screening for hypertension, on which the transition parameters pertaining to several multi-state models are based on. We also take into account the individual covariates, for example , the effect of smoking and betel-nut chewing that affects the progression of disease. Estimating mean sojourn time of the preclinical phase in the colorectal cancer shows that it takes 2.9346 years from the preclinical to clinical stage for the three-state model, but 3.1535 years using five-state model. The difference is 0.2189 years between the two models. In the regressive process of the hypertension, the mean sojourn time calculated in the preclinical phase by using three-state model was 6.7719 years. By using four-state model, estimation of the mean sojourn time is 6.906 years. Besides, the effect of the individual covariates in smoking and betel-nut chewing are taken into account in the hypertension by using the exponential regression model. Comparing the three stages to the four stages in the regressive process, both show that betel-nut chewing has obvious effect on the process regressing from the pre-hypertension to normal. The effect of smoking is not statistically significant the three-state model, but it will affect the progression of the hypertension from the stage I to stage II in the four-state model. Besides, chewing betel-but affects the progression and regression between normal and the prehypertension.
The Laplace transform in Multi-states Markov process has been demonstrated to be very efficient in estimating the mean sojourn time, a strong indicator for the delineation of natural progression of chronic disease and cancer. This approach can be extended from homogeneous to non-homogeneous process with the time-dependent covariates. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:52:54Z (GMT). No. of bitstreams: 1 ntu-97-R95842006-1.pdf: 669159 bytes, checksum: cd02abc714c2d54f2268cd72df625d01 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 目 錄
中 文 摘 要 3 Abstract 5 第一章 前言 7 第一節 研究背景 7 第二節 研究目的 11 第二章 文獻回顧 12 第一節 慢性病多階段病程之探討 12 第二節 以均質性馬可夫模式探討多階段疾病病程及轉移機率14 第三節 以非均質性馬可夫鏈模式探討多階段疾病病程及轉移機 率17 第四節 平均滯留期之求算 20 第五節 拉普拉斯轉換(Laplace transform) 22 第三章 統計方法 24 第一節 連續時間均質性馬可夫過程 24 第二節 拉普拉斯轉換於多階段過程中階段間轉移機率之應用34 第三節 拉普拉斯轉換於多階段過程中階段平均滯留時間之應用48 第四節 以迴歸模式考慮時間相依性變項 66 第四章 資料結構 68 第一節 大腸直腸癌疾病自然史探討 68 第二節 高血壓疾病自然史探討 70 第五章 分析結果 75 第一節 前進式多階段過程:以大腸直腸癌自然病程為例 75 第二節 可逆的多階段過程:以高血壓自然病程為例 80 第六章 討論 98 第一節 方法學及實務應用之貢獻 98 第二節 拉普拉斯轉換方法應用於前進式疾病模式 99 第三節 拉普拉斯轉換方法應用於可逆式疾病模式 100 第四節 研究限制及未來發展 101 第七章 結論 102 第八章 參考文獻 103 | |
| dc.language.iso | zh-TW | |
| dc.subject | 平均滯留時間 | zh_TW |
| dc.subject | 拉普拉斯轉換 | zh_TW |
| dc.subject | 轉移機率 | zh_TW |
| dc.subject | 連續時間均質性多階段馬可夫過程 | zh_TW |
| dc.subject | The mean sojourn time | en |
| dc.subject | The Laplace transform | en |
| dc.subject | continuous-time homogeneous multi-state Markov process | en |
| dc.subject | The transition probability | en |
| dc.title | 拉普拉斯轉換應用於多階段隨機模式:以高血壓及大腸直腸癌疾病病程為例 | zh_TW |
| dc.title | The Application of Laplace Transform in Multi-state Stochastic Process:Illustration with The Disease Natural History for Hypertension and Colorectal Cancer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 戴政,嚴明芳,黃崑明 | |
| dc.subject.keyword | 拉普拉斯轉換,轉移機率,平均滯留時間,連續時間均質性多階段馬可夫過程, | zh_TW |
| dc.subject.keyword | The Laplace transform,The transition probability,The mean sojourn time,continuous-time homogeneous multi-state Markov process, | en |
| dc.relation.page | 106 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-31 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 653.48 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
