Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40593
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王大銘(Da-Ming Wang)
dc.contributor.authorYi-Hsing Lienen
dc.contributor.author練易鑫zh_TW
dc.date.accessioned2021-06-14T16:52:32Z-
dc.date.available2008-08-05
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-29
dc.identifier.citation1. Beppu, M. M.; Arruda, E. J.; Vieira, R. S.; Santos, N. N., Adsorption of Cu(II) on porous chitosan membranes functionalized with histidine. Journal of Membrane Science 2004, 240, 227-235.
2. Ng, J. C. Y.; Cheung, W. H.; McKay, G., Equilibrium studies of the sorption of Cu(II) ions onto chitosan. Journal of Colloid and Interface Science 2002, 255, 64-74.
3. Bailey, S. E.; Olin, T. J.; Bricka, R. M.; Adrian, D. D., A review of potentially low-cost sorbents for heavy metals. Water Research 1999, 33, 2469-2479.
4. Ngah, W. S. W.; Kamari, A.; Koay, Y., Equilibrium and kinetics studies of adsorption of copper(II) on chitosan and chitosan/PVA beads. International Journal of Biological Macromolecules 2004, 34, 155-161.
5. 郭佩芸, 幾丁聚醣生物基材及滲透蒸發膜之製備. 國立台灣大學化學工程研究所碩士論文 2002.
6. Guibal, E., Interactions of metal ions with chitosan-based sorbents: a review Separation and Purification Technology 2004, 38, 43-74.
7. Alsarra, I. A.; Betigeri, S. S.; Zhang, H.; Evans, B. A.; Neau, S. H., Molecular weight and degree of deacetylation effects on lipase-loaded chitosan bead characteristics. Biomaterials 2002, 23, 3637-3644.
8. 饒佩如; 廖懿倩; 王姿雅; 許月琴; 陳文章; 王怡人, 磺化幾丁聚醣在天然氣純化效應之研究. In 第二十六屆高分子研討會, 台灣台南, 2003.
9. Guo, Z. Y.; Xing, R.; Liu, S.; Zhong, Z. M.; Ji, X.; Wang, L.; Li, P. C., The influence of molecular weight of quaternized chitosan on antifungal activity. Carbohydrate Polymers 2008, 71, 694-697.
10. Zhou, Y. G.; Yang, Y. D.; Guo, X. M.; Chen, G. R., Effect of molecular weight and degree of deacetylation of chitosan on urea adsorption properties of copper chitosan. Journal of Applied Polymer Science 2003, 89, 1520-1523.
11. 林文源, 幾丁聚醣抗菌作用的硏究. 國立臺灣大學食品科技學硏究所博士論文 1995.
12. Wong, Y. C.; Szeto, Y. S.; Cheung, W. H.; McKay, G., Effect of temperature, particle size and percentage deacetylation on the adsorption of acid dyes on chitosan. Adsorption-Journal of the International Adsorption Society 2008, 14, 11-20.
13. Cha Young Kim; Hyung-Min Choi; Cho, H. T., Effect of deacetylation on sorption of dyes and chromium on chitin Journal of Applied Polymer Science 1997, 63, 725-736.
14. Jayakumar, R.; Nwe, N.; Tokura, S.; Tamura, H., Sulfated chitin and chitosan as novel biomaterials. International Journal of Biological Macromolecules 2007, 40, 175-181.
15. Gibbs, G.; Tobin, J. M.; Guibal, E., Sorption of Acid Green 25 on chitosan: Influence of experimental parameters on uptake kinetics and sorption isotherms Journal of Applied Polymer Science 2003, 90, 1073-1080.
16. Masri, M. S.; Reuter, F. W.; Friedman, M., Binding of Metal Cations by Natural Substances. Journal of Applied Polymer Science 1974, 18, 675-681.
17. Chiou, M. S.; Li, H. Y., Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads. Journal of Hazardous Materials 2002, 93, 233-248.
18. Wang, Y. J.; Wang, X. H.; Luo, G. S.; Dai, Y. Y., Adsorption of bovin serum albumin (BSA) onto the magnetic chitosan nanoparticles prepared by a microemulsion system. Bioresource Technology 2008, 99, 3881-3884.
19. 洪偉翔, 多孔性幾丁聚醣微粒製備、分析與應用. 國立台灣大學化學工程學研究所碩士論文 2007.
20. Kratz, G.; Arnander, C.; Swedenborg, J.; Back, M.; Falk, C.; Gouda, I.; Larm, O., Heparin-chitosan complexes stimulate wound healing in human skin. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery 1997, 31, 119-123.
21. Rokhade, A. P.; Shelke, N. B.; Patil, S. A.; Aminabhavi, T. M., Novel hydrogel microspheres of chitosan and pluronic F-127 for controlled release of 5-fluorouracil. Journal of Microencapsulation 2007, 24, 274-288.
22. Elcin, A. E.; Elcin, Y. M.; Pappas, G. D., Neural tissue engineering: Adrenal chromaffin cell attachment and viability on chitosan scaffolds. Neurological Research 1998, 20, 648-654.
23. 謝承軒, 以乳化/冷凍凝膠法製備幾丁聚醣微粒及其特性分析與應用. 國立台灣大學化學工程學研究所碩士論文 2006.
24. ET, W. J.; E, H.; S, G.; B, L., Biopolymer L112, a chitosan with fatbinding properties and potential as a weight reducing agent: a review of in vitro and in vivo experiments. Grottammare: Italy, 2000.
25. Kester, J. J.; Fennema, O. R., Edible Films and Coatings - a review. Food Technology 1986, 40, 47-59.
26. Kochkina, Z. M.; Pospieszny, H.; Chirkov, S. N., Chitosan inhibits the phagolysis of Bacillus thuringiensis in culture. Applied Biochemistry and Microbiology 1996, 32, 227-230.
27. 李瑞生, 幾丁聚醣纖維和經架橋反應後纖維之抗菌性. 紡織中心期刊 1997, 17, 270-276.
28. Ngah, W. S. W.; Ghani, S. A.; Kamari, A., Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresource Technology 2005, 96, 443-450.
29. Chiou, M. S.; Li, H. Y., Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere 2003, 50, 1095-1105.
30. Ngah, W. S. W.; Endud, C. S.; Mayanar, R., Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. Reactive & Functional Polymers 2002, 50, 181-190.
31. Zeng, X. F.; Ruckenstein, E., Control of pore sizes in macroporous chitosan and chitin membranes. Industrial & Engineering Chemistry Research 1996, 35, 4169-4175.
32. Guibal, E.; Milot, C.; Eterradossi, O.; Gauffier, C.; Domard, A., Study of molybdate ion sorption on chitosan gel beads by different spectrometric analyses. International Journal of Biological Macromolecules 1999, 24, 49-59.
33. Zeng, X. F.; Ruckenstein, E., Cross-linked macroporous chitosan anion-exchange membranes for protein separations. Journal of Membrane Science 1998, 148, 195-205.
34. Zhang, J.; Zhang, Z. P.; Song, Y.; Cal, H., Bovine serum albumin (BSA) adsorption with Cibacron Blue F3GA attached chitosan microspheres. Reactive & Functional Polymers 2006, 66, 916-923.
35. Inoue, K.; Yoshizuka, K.; Ohto, K., Adsorptive separation of some metal ions by complexing agent types of chemically modified chitosan. Analytica Chimica Acta 1999, 388, 209-218.
36. Justi, K. C.; Favere, V. T.; Laranjeira, M. C. M.; Neves, A.; Casellato, A., Synthesis and characterization of modified chitosan through immobilization of complexing agents. Macromolecular Symposia 2005, 229, 203-207.
37. Weltrowski, M.; Martel, B.; Morcellet, M., Chitosan N-benzyl sulfonate derivatives as sorbents for removal of metal ions in an acidic medium. Journal of Applied Polymer Science 1996, 59, 647-654.
38. Vongchan, P.; Sajomsang, W.; Subyen, D.; Kongtawelert, P., Anticoagulant activity of a sulfated chitosan. Carbohydrate Research 2002, 337, 1239-1242.
39. Liu, W. G.; Zhang, J. R.; Cheng, N.; Cao, Z. Q.; Yao, K. D., Anticoagulation activity of crosslinked N-sulfofurfuryl chitosan membranes. Journal of Applied Polymer Science 2004, 94, 53-56.
40. Nagasawa, K.; Tohira, Y.; Inoue, Y.; Tanoura, N., Reaction between Carbohydrates and Sulfuric Acid .1. Depolymerization and Sulfation of Polysaccharides by Sulfuric Acid. Carbohydrate Research 1971, 18, 95-102.
41. Nudga, L. A.; Plisko, E. A.; Danilov, S. N., Synthesis and Properties of Sulfoethylchitosan. Zhurnal Prikladnoi Khimii 1974, 47, 872-875.
42. Muzzarelli, R. A. A., Modified Chitosans Carrying Sulfonic-Acid Groups. Carbohydrate Polymers 1992, 19, 231-236.
43. Gamzazade, A.; Sklyar, A.; Nasibov, S.; Sushkov, I.; Shashkov, A.; Knirel, Y., Structural features of sulfated chitosans Carbohydrate Polymers 1997, 34, 113-116.
44. Nishimura, S.-I.; Kai, H.; Shinada, K.; Yoshida, T.; Tokura, S.; Kurita, K.; Nakashima, H.; Yamamoto, N.; Uryu, T., Regioselective syntheses of sulfated polysaccharides: specific anti-HIV-1 activity of novel chitin sulfates Carbohydrate Research 1998, 306, 427-433
45. Ishihara, C.; Shimakawa, S.; Tsuji, M.; Arikawa, J.; Tokura, S., A Sulfated Chitin, Scm-Chitin-Iii, Inhibits the Clearance of Human Erythrocytes from the Blood-Circulation in Erythrocyte-Transfused Scid Mice. Immunopharmacology 1995, 29, 65-71.
46. Hagiwara, K.; Kuribayashi, Y.; Iwai, H.; Azuma, I.; Tokura, S.; Ikuta, K.; Ishihara, C., A sulfated chitin inhibits hemagglutination by Theileria sergenti merozoites. Carbohydrate Polymers 1999, 39, 245-248.
47. Youn, R. G.; Ryual, R. S.; Doung, J. H.; Uk, J. B., Synthesis and characterization of beta-poly(glucose-amine)N-(2,3-dihydroxypropyl) derivatives as medical care and biological joint material. Family 2. Tri or tetra-sulfated beta-chitosan. Macromolecular Symposia 2004, 216, 47-54.
48. Je, J. Y.; Park, P. J.; Kim, S. K., Prolyl endopeptidase inhibitory activity of chitosan sulfates with different degree of deacetylation. Carbohydrate Polymers 2005, 60, 553-556.
49. Zhang, C.; Ping, Q.; Zhang, H.; Shen, J., Preparation of N-alkyl-O-sulfate chitosan derivatives and micellar solubilization of taxol. Carbohydrate Polymers 2003, 54, 137-141.
50. Nishimura, K.; Nishimura, S. I.; Nishi, N.; Tokura, S.; Azuma, I., Effect of Chitin Heparinoids on the Activation of Peritoneal Macrophages and on the Production of Monokines in Mice. Molecular Biotherapy 1990, 2, 115-120.
51. Tokura, S.; Itoyama, K.; Nishi, N.; Nishimura, S. I.; Saiki, I.; Azuma, I., Selective Sulfation of Chitin Derivatives for Biomedical Functions. Journal of Macromolecular Science-Pure and Applied Chemistry 1994, A31, 1701-1718.
52. Horton, D.; Just, E. K., Preparation from Chitin of (1-]4)-2-Amino-2-Deoxy-Beta-D-Glucopyranuronan and Its 2-Sulfoamino Analog Having Blood Anticoagulant Properties. Carbohydrate Research 1973, 29, 173-179.
53. Whistler, R. L.; Kosik, M., Anticoagulant Activity of Oxidized and N-Sulfated and O-Sulfated Chitosan. Archives of Biochemistry and Biophysics 1971, 142, 106-&.
54. Muzzarelli, R. A. A.; Tanfani, F.; Emanueli, M.; Pace, D. P.; Chiurazzi, E.; Piani, M., Chitin in Nature and Technology. Plenum: New York, 1986.
55. Kazuo Kondo; Shin-ichi Nakagawa; Michiaki Matsumoto; Yamashita, T.; Furukawa, I., Selective Adsorption of Metal Ions on Novel Chitosan-Supported Sulfonic Acid Resin. J. Chem. Eng. Japan 1997, 30, 846-851.
56. Hadwiger, L. A.; Beckman, J. M., Chitosan as a Component of Pea-Fusarium-Solani Interactions. Plant Physiology 1980, 66, 205-211.
57. Pearce, R. B.; Ride, J. P., Chitin and Related-Compounds as Elicitors of the Lignification Response in Wounded Wheat Leaves. Physiological Plant Pathology 1982, 20, 119-123.
58. Kauss, H.; Jeblick, W.; Domard, A., The Degrees of Polymerization and N-Acetylation of Chitosan Determine Its Ability to Elicit Callose Formation in Suspension Cells and Protoplasts of Catharanthus-Roseus. Planta 1989, 178, 385-392.
59. Kanatt, S. R.; Chander, R.; Sharma, A., Chitosan glucose complex - A novel food preservative. Food Chemistry 2008, 106, 521-528.
60. Kanatt, S. R.; Chander, R.; Sharma, A., Chitosan and mint mixture: A new preservative for meat and meat products. Food Chemistry 2008, 107, 845-852.
61. Rhoades, J.; Roller, S., Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Applied and Environmental Microbiology 2000, 66, 80-86.
62. Jung, B. O.; Kim, C. H.; Choi, K. S.; Lee, Y. M.; Kim, J. J., Preparation of amphiphilic chitosan and their antimicrobial activities. Journal of Applied Polymer Science 1999, 72, 1713-1719.
63. Sosa, M. A. G.; Fazely, F.; Koch, J. A.; Vercellotti, S. V.; Ruprecht, R. M., N-Carboxymethylchitosan-N,O-Sulfate as an Anti-Hiv-1 Agent. Biochemical and Biophysical Research Communications 1991, 174, 489-496.
64. Kamide, K., Thermodtnamics of Polymer Solutions. Elsevier: Amasterdam, 1990.
65. Avramescu, M. E.; Girones, M.; Borneman, Z.; Wessling, M., Preparation of mixed matrix adsorber membranes for protein recovery. Journal of Membrane Science 2003, 218, 219-233.
66. Tantekin-Ersolmaz, S. B.; Atalay-Orala, C.; Tather, M.; Erdem-Senatalar, A.; Schoeman, B.; Sterte, J., Effect of zeolite particle size on the performance of polymer-zeolite mixed matrix membranes. Journal of Membrane Science 2000, 175, 285-288.
67. Figoli, A.; Sager, W.; Wessling, M., Synthesis of novel nanostructured mixed matrix membranes. Desalination 2002, 148, 401-405.
68. Anson, M.; Marchese, J.; Garis, E.; Ochoa, N.; Pagliero, C., ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation. Journal of Membrane Science 2004, 243, 19-28.
69. Kiyono, R.; Koops, G. H.; Wessling, M.; Strathmann, H., Mixed matrix microporous hollow fibers with ion-exchange functionality. Journal of Membrane Science 2004, 231, 109-115.
70. Li, Y.; Chung, T. S.; Cao, C.; Kulprathipanja, S., The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes. Journal of Membrane Science 2005, 260, 45-55.
71. Jiang, L. Y.; Chung, T. S.; Cao, C.; Huang, Z.; Kulprathipanja, S., Fundamental understanding of nano-sized zeolite distribution in the formation of the mixed matrix single- and dual-layer asymmetric hollow fiber membranes. Journal of Membrane Science 2005, 252, 89-100.
72. Inglezakis, V. J.; Poulopoulos, S. G., Adsorption, Ion Exchange and Catalysis. Elsevier: Boston 2006.
73. Ho, M.-H.; Kuo, P.-Y.; Hsieh, H.-J.; Hsien, T.-Y.; Hou, L.-T.; Lai, J.-Y.; Wang, D.-M., Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods Biomaterials 2004, 25, 129-138.
74. Jung, B.-O.; Na, J.; Kim, C. H., Synthesis of Chitosan Derivatives with Anionic Groups and Its Biocompatibility In Vitro. J. Ind. Eng. Chem. 2007, 13, 772-776.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40593-
dc.description.abstract本研究以天然高分子-幾丁聚醣做為研究對象,分別製備包埋離子交換樹脂之混合矩陣式基材及具有磺酸根官能基的磺化幾丁聚醣基材,並探討其對銅離子之移除效果。
本研究成功地將離子交換樹脂(Amberjet 1200H, Rohm & Haas)均勻分散包埋於幾丁聚醣立體結構中,製成幾丁聚醣混合矩陣式基材(Chitosan mixed matrices)。在微觀上,幾丁聚醣基材的雙連續結構使其具有高比表面積(72.26m2/g),可有效提升混合矩陣式基材對銅離子之吸附量。混合矩陣式基材具有多孔性的幾丁聚醣立體結構,銅離子能流經基材內部與幾丁聚醣之胺基或包埋的離子交換樹脂之磺酸根官能基反應。經由銅離子吸附實驗證實混合矩陣式基材能有效提升幾丁聚醣基材於低濃度時之銅離子吸附能力,並具有應用於處理大範圍離子濃度的潛力。由等溫吸附實驗可知,幾丁聚醣混合矩陣式基材對銅離子之吸附行為以Langmuir模型及Freundlich模型皆能適切描述。
在磺化幾丁聚醣基材(Sulfonic chitosan matrix, SCM)部分,本研究先以epichlorohydrin對幾丁聚醣基材進行交聯,再以1,3-propane sultone(1,3-PS)經由異相磺化反應將丙基磺酸根官能基(-(CH2)3SO3H)接枝於幾丁聚醣之胺基上,並以不同體積比之1,3-PS/乙醇溶液與幾丁聚醣基材反應製備不同磺化程度的幾丁聚醣基材。經由元素分析儀鑑定得知以50mL 1,3-PS(無乙醇溶液)進行3小時磺化程序的幾丁聚醣基材之磺化率約為100.00%;而幾丁聚醣基材與不同體積比(0.1/50、0.5/50及2.5/50)之1,3-PS/乙醇溶液反應後之磺化率分別為35.05%、57.40%及96.05%。電子顯微鏡照片顯示幾丁聚醣基材於交聯及磺化反應後表面結構發生合併且部分面積被緻密層所覆蓋。基材表面結構合併情形與緻密層覆蓋面積隨著磺化程度的增加而增大。磺化幾丁聚醣基材對初濃度100mg/L之銅離子溶液的吸附量(14.5mg/g)較未磺化的幾丁聚醣基材(28.4mg/g)低,且銅離子吸附量隨幾丁聚醣基材的磺化率升高而降低。可能原因為幾丁聚醣基材於磺化後分子量增加,使相同重量之磺化幾丁聚醣基材與磺化前相較,具有較少的官能基能與銅離子反應;另外交聯反應降低磺化幾丁聚醣基材之-NH2官能基密度,且磺化幾丁聚醣基材的緻密結構造成基材的比表面積降低,都是幾丁聚醣基材於磺化後對銅離子吸附量降低的可能原因。
zh_TW
dc.description.abstractIn this study, chitosan mixed matrices and sulfonic chitosan matrices were prepared for copper ion adsorption process. Ion exchange resins (Amberjet 1200H, Rohm & Haas) were incorporated into the stereo structure of chitosan matrices to fabricate chitosan mixed matrices. The porous structure of chitosan matrices could make the copper ion solution flowing though the matrices. The copper ions would be easily caught by the amino groups of chitosan matrices or sulfonic groups of ion exchange resins. The specific surface area of chitosan mixed matrices are 72.26m2/g due to the formation of bi-continuous structure, which has considerable surface area and can enhance the copper ion adsorption capacities. Results of copper ion adsorption experiments showed that adsorption capacities of chitosan matrices were obviously improved at low ion concentrations and could be utilized in various ranges of ion concentrations. The copper ion adsorption isotherm of chitosan mixed matrices fitted well with both Langmuir and Freundlich models.
In sulfonation process, chitosan matrices were cross-linked and sulfonated by epichlorohydrin(ECH) and 1,3-propane sultone(1,3-PS) solutions respectively. Chitosan matrices with different degree of sulfonation can be composed by reacting chitosan matrices with different volume ratio of the 1,3-PS/EtOH solution. By the results of elementary analysis, the degree of sulfonation of sulfonic chitosan matrices (without EtOH) was 100.00%. The sulfonic chitosan matrices which reacted with 0.1/50, 0.5/50 and 2.5/50 of volume ratio of 1,3-PS/EtOH solutions were 35.05%, 57.40% and 96.05% respectively. SEM images revealed that the external structure of sulfonic chitosan matrices were suppressed and sheltered by dense layer after cross-linking and sulfonation processes. The results of copper ion adsorption experiments showed that the copper ion adsorption capacity of sulfonic chitosan matrix (14.5mg/g) is lower than that of chitosan matrix (28.4mg/g) at an initial ion concentration of 100mg/L. The possible reasons may include: 1) Based on the same weight of chitosan adsorbents, increasing molecular weight of matrices after sulfonation process could decrease the number of functional groups feasible reacting with copper ions; 2) Cross-linking process decrease the density of amino groups available chelate with copper ions; 3) Structure transformation of the sulfonic chitosan matrices could decrease the attainable surface area for adsorption processes.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:52:32Z (GMT). No. of bitstreams: 1
ntu-97-R95524034-1.pdf: 3856341 bytes, checksum: 35778d32d7cbc87277493a90eb6100d5 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
中文摘要 III
英文摘要 V
目錄 VII
圖目錄 IX
表目錄 IX
第一章 緒論 1
1.1 研究背景及動機 1
1.2 研究目的與方法 3
第二章 文獻回顧 4
2.1 幾丁質與幾丁聚醣 4
2.1.1 基本性質 4
2.1.2 幾丁聚醣之分子量及去乙醯度 4
2.1.3 幾丁聚醣的應用 6
2.1.4 幾丁聚醣的改質及磺酸化 8
2.2 混合基材之發展及應用 14
2.3 吸附基本理論 16
2.3.1 物理吸附、化學吸附及靜電力吸附 16
2.3.2 等溫吸附模式 17
第三章 實驗 19
3.1 實驗藥品 19
3.2 實驗儀器 20
3.3幾丁聚醣混合矩陣式基材 21
3.3.1 實驗流程圖 21
3.3.2 製備方式 22
3.3.4 銅離子吸附實驗 25
3.4 磺化幾丁聚醣矩陣式基材 28
3.4.1 實驗流程圖 28
3.4.2 製備方式 29
3.4.4 銅離子吸附實驗 33
第四章 幾丁聚醣混合矩陣式基材 34
4.1 基材性質分析 34
4.1.1 吸附基材之外觀 34
4.1.2 顯微結構觀察 35
4.1.3 比表面積及平均孔徑 37
4.2 銅離子吸附實驗 38
4.2.1 幾丁聚醣矩陣式基材及Amberjet 1200H之吸附能力比較 38
4.2.2 幾丁聚醣混合矩陣式基材之吸附能力探討 41
第五章 磺化幾丁聚醣基材 45
5.1 基材性質分析 45
5.1.1 傅立葉轉換紅外線光譜圖 45
5.1.2 元素分析 48
5.1.3 顯微結構觀察 48
5.2 銅離子吸附實驗 49
5.2.1 磺化幾丁聚醣矩陣式基材對銅離子吸附之評估 49
5.2.2 幾丁聚醣基材的磺化率對吸附量之影響 59
第六章 結論 60
參考文獻 62
dc.language.isozh-TW
dc.title以幾丁聚醣混合矩陣式基材及磺化幾丁聚醣基材作為銅離子吸附劑之評估zh_TW
dc.titleAssessment of Chitosan Mixed Matrix and Sulfonic Chitosan Matrix as Copper Ion Adsorbentsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.coadvisor謝子陽(Tzu-Yang Hsien)
dc.contributor.oralexamcommittee謝學真(Hsyue-Jen Hsieh),何明樺(Ming-Hua Ho)
dc.subject.keyword幾丁聚醣,銅離子,吸附,混合矩陣式基材,磺化,zh_TW
dc.subject.keywordchitosan,copper ion,adsorption mixed matrix,sulfonic,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2008-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
3.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved