請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40585完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何國川 | |
| dc.contributor.author | Zhong-Yo | en |
| dc.contributor.author | 何忠祐 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:52:13Z | - |
| dc.date.available | 2013-08-05 | |
| dc.date.copyright | 2008-08-05 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-29 | |
| dc.identifier.citation | 1 Larry Kazmerski, National Renewable Energy Laboratory
2 Paul Maycock ,PV News, February, 2007 3 Eric Martinot, renewable 2007 global status report 4 IEA Energy Statistics,renewable in global energy supply, January, 2007 5 D. M. Chapin, C. S. Fuller and G. L. Pearson, 'A new silicon p-n junction photocell for converting solar radiation into electrical power' Journal of Applied Physics 25 (5), 676 (1954). 6 M. A. Green, K. Emery, Y. Hishikawa and W. Warta, 'Solar cell efficiency tables (version 31),' Progress in Photovoltaics 16, 61 (2008). 7 W. Shockley and H. J. Queisser, 'Detailed balance limit of efficiency of p-n junction solar cells' Journal of Applied Physics 32 (3), 510(1961). 8 S. J. Dudkowskit and L. I. Grossweiner,”Sensitization of Photoconduction in a Zinc Oxide Film by Eosin”,Journal of the optical society of america,54,486(1964) 9 Brian O’Regan and Michael Gratzel,a low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,Nature,353,737(1991) 10 M. D’Iorio, “Molecular materials for micro-electronics,”Canadian Journal of Physics, 78, 231, (2000). 11 T. A. Skotheim, Ed., Handbook of Conducting Polymers. New York: Marcel Dekker (1986) 12 S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature, 428, 911( 2004) 13 S. R. Marder, J. E. Sohn, and G. D. Stucky, Eds. Washington, DC, “Materials for Nonlinear Optics: Chemical Perspetives”, American Chemistry Society, 455, 683(1991) 14 S. E. Shaheen, R. Radspinner, N. Peyghambarian, and G. E. Jabbour, “Fabrication of bulk heterojunction plastic solar cells by screen printing,” Appl. Phys. Lett., 79, 2996( 2001) 15 H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, “High-resolution inkjet printing of all-polymer transistor circuits,” Science,290, 2123 ( 2000) 16 M. Granstrom, K. Petritsch, A.C. Arias, A. Lux, M.R. Andersson, R.H. Friend, 'Laminated fabrication of polymeric photovoltaic diodes', Nature 395, 257 (1998). 17 G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, 'Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions', Science, 270, 1789 (1995). 18 R. Hoffmann, C. Janiak, and C. Kollmar, 'A chemical approach to the orbitals of organic polymers' Macromolecules 24 (13), 3725 (1991). 19 H. Bassler, 'Charge transport in disordered organic photoconductors – a monte carlo simulation study' Physica Status Solidi B-Basic Research 175 (1), 15 (1993). 20 E. M. Conwell, 'Impurity band conduction in Germanium and Silicon' Physical Review, 103 (1), 51 (1956). 21 N. F. Mott, 'On the transition to metallic conduction in semiconductors' Canadian Journal of Physics, 34 (12), 1356 (1956). 22 C. Tanase, E. J. Meijer, P. W. M. Blom and D. M. de Leeuw, 'Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes,' Physical Review Letters, 91 (21) (2003). 23 C. Tanase, P. W. M. Blom and D. M. de Leeuw, 'Origin of the enhanced space-charge-limited current in poly(p-phenylene vinylene),' Physical Review B ,70 (19) (2004). 24 C. Tanase, P. W. M. Blom, D. M. de Leeuw and E. J. Meijer, 'Charge carrier density dependence of the hole mobility in poly(p-phenylene vinylene),' Physica Status Solidi a-Applied Research, 201 (6), 1236 (2004). 25 W. F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. A. Bobbert, P. W. M. Blom, D. M. de Leeuw and M. A. J. Michels, 'Unified description of charge-carrier mobilities in disordered semiconducting polymers,' Physical Review Letters, 94 (2005). 26 M. Yan, L.J. Rothberg, F. Papadimitrakopoulos, M.E. Galvin, T.M. Miller, 'Defect quenching of conjugated polymer luminescence', Phys. Rev. Lett., 73(5), 744 (1994). 27 L.J. Rothberg, M. Yan, S.Son, M.E. Galvin, E.W. Kwock, T.M. Miller, H.E. Katz, R.C. Haddon, F. Papadimitrakopoulos, 'Intrinsic and extrinsic constraints on phenylenevinylene polymer electroluminescence', Synthetic Metals, 78, 231 (1996). 28 A. Luque, S. Hegedus (Eds.), Handbook of Photovoltaic Science and Engineering, Wiley, England (2003). 29 J. M. Kroon, M. M. Wienk, W. J. H. Verhees, and J. C. Hummelen, “Accurate efficiency determination and stability studies of conjugated polymer/fullerene solar cells”,Thin Solid Films, 403,223 (2002). 30 M.A. Green., “Solar Cells - Operating Principles, Technology and System Applications.”, University of New South Wales, Kensington, (1992). 31 D.P. Birnie“Rational solvent selection strategies to combat striation formation during spin coating of thin films”, Journal of Material Research., 16, 1145 (2001). 32 D.E. Haas, D.P. Birnie, M.J. Zecchino, J.T. Figueroa,” The effect of radial position and spin speed on striation spacing in spin on glass coatings”, Journal of Material Science Letters, 20 1763 (2001) 33 L.D.McMillan, C.A. Paz deAraujo, T.L. Roberts, J. Cuchiaro, M.C. Scott, J.F. Scott,” Liquid source CVD”, Integrated Ferroelectrics, 2 ,351 (1992) 34 M. Huffmann, “Liquid source misted chemical deposition(LSMCD):A critical review”, Integrated Ferroelectrics, 10, 39 (1995) 35 L. E. Scriven, 'Physics and applications of dip coating and spin coating,' Mater. Res. Soc. Symp. Proc. 121, 717 36 G. Hunderford, M. Rui Pereira, J.A. Ferreira, T.M.R. Viseu, A.F. Coelho, M. Isabel, C. Ferreira, K. Suhling, “Probing Si and Ti Based Sol-Gel Matrices by Fluorescence Techniques”, Journal of Fluorescence, 12 (2002) 397 37 T. Shimoda, K. Morii, S. Seki et al., 'Inkjet printing of light-emitting polymer displays,' Mrs Bulletin 28 (11), 821 (2003). 38 P. Calvert, 'Inkjet printing for materials and devices,' Chemistry of Materials 13 (10), 3299 (2001). 39 C. N. Hoth, S. A. Choulis, P. Schilinsky et al., 'High photovoltaic performance of inkjet printed polymer: Fullerene blends,' Advanced Materials 19, 3973 (2007). 40 S. Barazzouk, S. Hotchandani, and P. V. Kamat, 'Nanostructured fullerene films,' Advanced Materials 13 (21), 1614 (2001). 41 H. Imahori, 'Electrophoretic deposition of donor-acceptor nanostructures on electrodes for molecular photovoltaics,' Journal of Materials Chemistry 17 (1), 31 (2007). 42 T. Umeyama, M. Fujita, N. Tezuka et al., 'Electrophoretic deposition of single-walled carbon nanotubes covalently modified with bulky porphyrins on nanostructured SnO2 electrodes for photoelectrochemical devices,' Journal of Physical Chemistry C 111 (30), 11484 (2007) 43 T. X. Zhou, T. Ngo, J. J. Brown et al., 'Stable and efficient electrophosphorescent organic light-emitting devices grown by organic vapor phase deposition,' Applied Physics Letters 86 (2) (2005). 44 C. Rolin, S. Steudel, K. Myny et al., 'Pentacene devices and logic gates fabricated by organic vapor phase deposition,' Applied Physics Letters 89 (20) (2006). 45 P. E. Burrows, S. R. Forrest, L. S. Sapochak et al., 'Organic vapor-phase deposition – a new method for the growth of organic thin-films with large optical nonlinearities' Journal of Crystal Growth 156 (1-2), 91 (1995). 46 L. Chen,P. Degenaar, D.D.C. Bradley,“Polymer transfer printing: application to layer coating, pattern definition, and diode dark current blocking“, Adv. Mater. 9999,1-5 (2008) 47 K. H. Yim, Z. Zheng,Z. Liang, R. H. Friend, W. T. S. Huck, J. S. Kim,”efficient conjugated-polymer optoelectronic devices fabricated by thin-film transfer-printing technique” Adv. Func. Mater. 18,101 (2008) 48 N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, photodiodes and photovoltaic cells,” Applied Physics Letters, 62, 585 (1993) 49 N.S. Sariciftci, L. Smilowitz, A.J. Heeger, and F. Wudl, ”Photoinduced electron transfer from a conducting polymer to Buckminster-fullerene.”, Science, 258, 1474, (1992) 50 N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, photodiodes and photovoltaic cells.”, Applied Physics Letters, 62, 585 (1993) 51 A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, E. Harth, A. Gugel, and K. Mullen: Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures. Physical Review B., 59, 15 346 (1999) 52 G. Yu, J. Gao, J. C. Hummelen, F.Wudl, and A. J. Heeger: Polymer photovoltaic cells: Enhanced efficiencies via network of internal donor– acceptor heterojuntions. Science, 270, 1789 (1995) 53 G. Yu and A.J. Heeger: Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. Journal of Applied Physics, 78, 4510, (1995) 54 S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, and J.C. Hummelen: 2.5% efficient organic plastic solar cells. Applied Physics Letters, 78, 841, (2001) 55 J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao, and C. L. Wilkins, “Preparation and characterization of fulleroid and methanofullerene derivatives,” Journal of Organic Chemistry, 60, 532 (1995) 56 S. E. Shaheen, R. Radspinner, N. Peyghambarian, and G. E. Jabbour, “Fabrication of bulk heterojunction plastic solar cells by screen printing,” Applied Physics Letters, 79, 2996, (2001) 57 “Konarka acquires Siemens’ organic photovoltaic research activities (press release),” Konarka, Lowell, MA, Sep. 7 (2004) 58 G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, 'High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,' Nature Materials, 4 (11), 864 (2005). 59 G. Yu, J. Gao, J. C. Hummelen, F.Wudl, and A. J. Heeger, “Polymer photovoltaic cells: Enhanced efficiencies via network of internal donor–acceptor heterojuntions,” Science, 270, 1789 (1995) 60 S. Hotta, S. D. D. V. Rughooputh, and A. J. Heeger, “Conducting polymer composites of soluble polythiophenes in polystyrene,” Synthetic Metals, 22, 79, (1987) 61 C. Winder, G. Matt, C.J. Brabec, N.S. Sariciftci, R.A.J. Jannsen, J.C. Hummelen,” Sensitization of Low Bandgap Polymer bulk heterojunction Solar Cells”, Thin Solid Films, 373, 403 (2002) 62 A. Ltaief, R. Ben Chadbane, A. Bouazizi et al., 'Photovoltaic properties of bulk heterojunction solar cells with improved spectral coverage,' Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 26 (2-3), 344 (2006). 63 C. F. Zhang, S. W. Tong, C. Y. Jiang et al., 'Simple tandem organic photovoltaic cells for improved energy conversion efficiency,' Applied Physics Letters 92 (8) (2008) 64 W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” Journal of Applied Physics, 32, 3, 510 (1961). 65 C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells,” Journal of Applied Physics, 51, 8, 4494 (1980) 66 A. D. Vos, C. C. Grosjean, and H. Pauwels, “On the formula for the upper limit of photovoltaic solar energy conversion efficiency,” Journal of Physics D: Applied Physics, 15, 10, 1982 (2003) 67 K. A. Bertness, S. R. Kurtz, D. J. Friedman, A. E. Kibbler, C. Kramer and J. M. Olson, '29.5% efficient GaLnP/GaAs tandem solar cells' Applied Physics Letters, 65 (8), 989 (1994). 68 A. G. F. Janssen, T. Riedl, S. Hamwi et al., 'Highly efficient organic tandem solar cells using an improved connecting architecture,' Applied Physics Letters, 91 (7) (2007) 69 J. Gilot, M. M. Wienk, and R. A. J. Janssen, 'Double and triple junction polymer solar cells processed from solution,' Applied Physics Letters, 90 (14) (2007). 70 G. Dennler, H. J. Prall, R. Koeppe et al., 'Enhanced spectral coverage in tandem organic solar cells,' Applied Physics Letters, 89 (7) (2006). 71 Thomas M. Schweizer,” Electrical characterization and investigation of the piezoresistive effect of PEDOT:PSS thin films, Electrical and Computer Engineering, Georgia Institute of Technology, April (2005) 72 A. M. Stoneham, M. M. D. Ramos, A. M. Almeida, H. M. G. Correia, R. M. Ribeiro, H. Ness and A. J. Fisher, 'Understanding electron flow in conducting polymer films: injection, mobility, recombination and mesostructure,' Journal of Physics-Condensed Matter 14 (42), 9877 (2002). 73 J. Ouyang, Q. F. Xu, C. W. Chu et al., 'On the mechanism of conductivity enhancement in poly (3,4-ethylenedioxythiophene): poly(styrene sulfonate) film through solvent treatment,' Polymer 45 (25), 8443 (2004). 74 H. H. Yang, S. W. LeFevre, C. Y. Ryu et al., 'Solubility-driven thin film structures of regioregular poly(3-hexyl thiophene) using volatile solvents,' Applied Physics Letters 90 (17) (2007). 75 J. F. Chang, J. Clark, N. Zhao et al., 'Molecular-weight dependence of interchain polaron delocalization and exciton bandwidth in high-mobility conjugated polymers,' Physical Review B 74 (11) (2006). 76 H. Sirringhaus, N. Tessler, and R. H. Friend, 'Integrated optoelectronic devices based on conjugated polymers,' Science 280 (5370), 1741 (1998). 77 Maher Al-Ibrahim, H. -Klaus Roth, U. Zhokhavets, G. Gobsch and S. Sensfuss., ”Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene ”,Sol. Ener. Mat. & Sol. Cells,85,13 (2005) 78 M. Al-Ibrahim, ROTH H K, SENSFUSS S” Efficient large-area polymer solar cells on flexible substrates”, Applied Physics Letters,85,9,1481(2004) 79 C. Lungenschmied, G. Dennler, H. Neugebauer, S. N. Sariciftci, M. Glatthaar, T. Meyer, A. Meyer,” Flexible, long-lived, large-area, organic solar cells”, sol. Ener.mat. Sol. Cells,91,379(2007) 80 C. W. Tang, '2-Layer Organic Photovoltaic Cell,' Applied Physics Letters 48 (2), 183 (1986). 81 N.S. Sariciftci, “Primary Photoexcitations in Conjugated Polymers: Molecular Exciton versus Semiconductor Band Model”,World Scientific, Singapore, (1997) 82 N. S. Sariciftci, L. Smilowitz, A. J. Heeger et al., 'Photoinduced Electron-Transfer from a Conducting Polymer to Buckminsterfullerene,' Science 258 (5087), 1474 (1992). 83 M. Granstrom, K. Petritsch, A. C. Arias et al., 'Laminated fabrication of polymeric photovoltaic diodes,' Nature 395 (6699), 257 (1998). 84 G. Li, V. Shrotriya, J. S. Huang et al., 'High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,' Nature Materials 4 (11), 864 (2005). 85 J. S. Huang, G. Li, and Y. Yang, 'A semi-transparent plastic solar cell fabricated by a lamination process,' Advanced Materials 20, 415(2008). 86 C. C. Chang, J. F. Chen, S. W. Hwang et al., 'Highly efficient white organic electroluminescent devices based on tandem architecture,' Applied Physics Letters 87 (25) (2005). 87 A. Hadipour, B. de Boer, J. Wildeman et al., 'Solution-processed organic tandem solar cells,' Advanced Functional Materials 16 (14), 1897 (2006). 88 C. W. Chen, P. Y. Hsieh, H. H. Chiang et al., 'Top-emitting organic light-emitting devices using surface-modified Ag anode,' Applied Physics Letters 83 (25), 5127-5129 (2003). 89 G. Dennler, H. J. Prall, R. Koeppe et al., 'Enhanced spectral coverage in tandem organic solar cells,' Applied Physics Letters 89 (7) (2006). 90 C. H. Chen and H. F. Meng, 'Recombination distribution and color tuning of multilayer organic light-emitting diode,' Applied Physics Letters 86 (20) (2005). 91 S. R. Forrest, 'The path to ubiquitous and low-cost organic electronic appliances on plastic,' Nature 428 (6986), 911 (2004). 92 S. R. Tseng, S. C. Lin, H. F. Meng et al., 'General method to solution-process multilayer polymer light-emitting diodes,' Applied Physics Letters 88 (16) (2006). 93 Z. Liang, O. M. Cabarcos, D. L. Allara et al., 'Hydrogen-bonding-directed layer-by-layer assembly of conjugated polymers,' Advanced Materials 16 (9-10), 823 (2004). 94 W. L. Ma, P. K. Iyer, X. Gong et al., 'Water/methanol-soluble conjugated copolymer as an electron-transport layer in polymer light-emitting diodes,' Advanced Materials 17 (3), 274-(2005). 95 M. L. Chabinyc, A. Salleo, Y. L. Wu et al., 'Lamination method for the study of interfaces in polymeric thin film transistors,' Journal of the American Chemical Society 126, 13928 (2004). 96 A. L. Briseno, M. Roberts, M. M. Ling et al., 'Patterning organic semiconductors using 'dry' poly(dimethylsiloxane) elastomeric stamps for thin film transistors,' Journal of the American Chemical Society 128 (12), 3880 (2006). 97 G. Yu, J. Gao, J. C. Hummelen et al., 'polymer photovoltaic cells – enhanced efficiencies via a network of internal donor-acceptor heterojunctions' Science 270 (5243), 1789 (1995). 98 C. W. Tang, '2-layer organic photovoltaic cell' Applied Physics Letters 48 (2), 183 (1986). 99 D. Wohrle and D. Meissner, 'organic solar cells' Advanced Materials 3 (3), 129 (1991). 100 X. Gong, W. L. Ma, J. C. Ostrowski et al., 'White electrophosphorescence from semiconducting polymer blends,' Advanced Materials 16 (7), 615 (2004). 101 W. Sotoyama, T. Satoh, N. Sawatari et al., 'Efficient organic light-emitting diodes with phosphorescent platinum complexes containing (NCN)-C-boolean AND-N-boolean AND 4-coordinating tridentate ligand,' Applied Physics Letters 86 (15) (2005). 102 C. J. Brabec, A. Cravino, D. Meissner et al., 'Origin of the open circuit voltage of plastic solar cells,' Advanced Functional Materials 11 (5), 374 (2001). 103 Y. Y. Lin, T. H. Chu, C. W. Chen et al., 'Improved performance of polymer/TiO2 nanorod bulk heterojunction photovoltaic devices by interface modification,' Applied Physics Letters 92 (5) (2008). 104 C. J. Brabec, G. Zerza, G. Cerullo et al., 'Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time,' Chemical Physics Letters 340 (3-4), 232 (2001). 105 P. W. M. Blom, M. J. M. deJong, and M. G. vanMunster, 'Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene),' Physical Review B 55 (2), R656 (1997). 106 P. Peumans and S. R. Forrest, 'Very-high-efficiency double-heterostructure copper phthalocyanine/C-60 photovoltaic cells,' Applied Physics Letters 79 (1), 126 (2001). 107 G. Li, Y. Yao, H. Yang et al., ''Solvent annealing' effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes,' Advanced Functional Materials 17 (10), 1636 (2007). 108 X. N. Yang, J. Loos, S. C. Veenstra et al., 'Nanoscale morphology of high-performance polymer solar cells,' Nano Letters 5 (4), 579 (2005). 109 F. Padinger, R. S. Rittberger, and N. S. Sariciftci, 'Effects of postproduction treatment on plastic solar cells,' Advanced Functional Materials 13 (1), 85 (2003). 110 W. U. Huynh, J. J. Dittmer, W. C. Libby et al., 'Controlling the morphology of nanocrystal-polymer composites for solar cells,' Advanced Functional Materials 13 (1), 73 (2003). 111 S. Berson, R. de Bettignies, S. Bailly et al., 'Elaboration of P3HT/CNT/PCBM composites for organic photovoltaic cells,' Advanced Functional Materials 17 (16), 3363 (2007). 112 Y. Y. Lin, T. H. Chu, C. W. Chen et al., 'Improved performance of polymer/TiO2 nanorod bulk heterojunction photovoltaic devices by interface modification,' Applied Physics Letters 92 (5) (2008). 113 Y. Y. Lin, C. W. Chen, T. H. Chu et al., 'Nanostructured metal oxide/conjugated polymer hybrid solar cells by low temperature solution processes,' Journal of Materials Chemistry 17 (43), 4571 (2007). 114 W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen, 'Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer,' Advanced Materials 16 (12), 1009 (2004). 115 S. Sista, Y. Yao, Y. Yang et al., 'Enhancement in open circuit voltage through a cascade-type energy band structure,' Applied Physics Letters 91 (2007). 116 G. Dennler, H. J. Prall, R. Koeppe et al., 'Enhanced spectral coverage in tandem organic solar cells,' Applied Physics Letters 89 (7) (2006). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40585 | - |
| dc.description.abstract | 有機光電元件在效能上至今雖尚無法與無機材料相提並論,但其應用上的廣度更甚於無機光電元件。除了製程及材料的成本大幅降低外,在可撓曲基板上的發展具有高度的應用性,尤以高分子材料所具有的撓曲性更備受矚目。雖然在能源及現今市場需求的角度上,效能的提升是最根本的要求,高效率材料的研發是一直以來學術努力的方向,但可撓性元件將是未來有機光電元件應用的重要領域。 有鑑於此,在本論文的研究重點之一即著重於可撓曲元件的組裝。另一方面,在提升元件表現的方法上,除了研發新材料外,對元件進行各種處理改善有機材料在微結構上的排列在近幾年的研究上日趨成熟。此外,從無機光電元件的發展上可以發現,在複合層結構成功組裝後,理論計算可達的最高效率因此被超越。然而,在多層元件的組裝上尚未有一不失元件表現的方式來進行研究及應用。以小分子來說,多層的結構可以高真空的熱蒸鍍來達成,但其過程較為繁複;而高分子材料雖有溶液製程的方便性,卻因此失去了其多層結構的可能性。如何有效並且方便地藉由多層結構來提升元件的表現成為元件物理上的瓶頸。本論文第二部份,也是最主要的研究,即在討論如何有效地製備多層高分子光電元件來提升其整體效能。
在可撓曲基板的組裝上,我們在元件底部以玻璃支撐,使得可撓曲基本可以旋轉塗佈的方式來製備高分子薄膜。並達到可與玻璃基板比擬的高分子太陽能電池效能(> 3 %)。製作於 6 x 6 cm2大面積的可撓曲基板也以達到將近40 mA的短路電流及1.2 V 的開環電壓。 第二部份中,我們以表面處理過的聚二甲基矽氧烷來進行乾式轉移有機光電薄膜,以此方式成功地製作出不失傳統旋轉塗佈所得薄膜之光電性質,並進一步以複合層結構發展出控制成分分佈的光電轉換層及載子萃取結構來提升元件性能。 綜觀上述,本研究建立了可撓曲有基光電元件的平台並開啟了有機光電複合層元件物理的領域。此平台提供了目前所有高分子光電元件製作於可撓曲基板的捷徑。而此薄轉移的方式更突破了傳統高分子薄膜製程的限制,同時具有製程便利的優點,對於有機光電元件的效率將有更大的進展可能性。 | zh_TW |
| dc.description.abstract | From the engineering point of view, polymer photovoltaics or light emitting diodes gain their advantages over inorganic optoelectronics in the utilization of flexible substrate. On the other hand, efficiency is always the major demand for commercial application. Instead of pursuing device treatment methods and new materials with higher device performance in the field of organic optoelectronics, in this thesis, we devoted ourselves to flexible photovoltaics and new architectures for improving device performance.
In the first part of our work, flexible photovoltaics based on conventional P3HT:PCBM bulk heterojunction system were fabricated on PET/ITO substrate. To simplify the procedures, a back glass support was used for spin coater. Upon the optimization of the manufacture technique, efficiency more than 3% has been demonstrated for flexible photovoltaics. Furthermore, large area, flexible device with short current ~40 mA and open circuit voltage ~1.2 V have been achieved. Secondly, film transfer technology through poly(di-methylsilane) (PDMS) for the fabrication of organic optoelectronic thin films has been demonstrated. The transfer process not only overcomes traditional problems on multilayered polymeric structure construction but furnishes the most convenient way for cascade devices fabrication. Through the process, it was found to be a function of the force exerted on PDMS and the target surface, as well as the temperature at which the transfer takes place completely and successfully. The surface morphology of the films grown on PDMS ensure larger surface roughness, thus creating more interface area and comparable conversion efficiency toward traditional process has been manifested. Additionally, benefited from residual free process, cascade structure with donor acceptor distribution control in photoactive layer is successfully demonstrated even higher device performance could be approached in the future. Furthermore, by controlling the surface properties of the stamp, different interaction of the PDMS toward each components on it was supposed to be an fruitful medium for self-organization of organic materials what was preferred for photonic and electronic properties of the organic optoelectronic thin films. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:52:13Z (GMT). No. of bitstreams: 1 ntu-97-R95549014-1.pdf: 7175165 bytes, checksum: becdba8760744d204cd1d3a47d391a80 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
Acknowledgement. ii Abstract iii Abstract(Chinese) v Table of contents vii List of Figures xi List of Tables xiv Chapter1 Thesis Motivation 1 1-1 Global energy Issue 2 1-2 Three major types of solar cells 5 1-2.1 Inorganic photovoltaics 1-2.2 Photoelectrochemical cell 1-2.3 Organic photovoltaic solar cell 1-3 Summary 14 Chapter 2 Basic principles of organic based photovoltaics 16 2-1 Conjugated polymer. 17 2-2 Photovoltaic process in organic semiconductors. 18 2-2.1Photoexcitation in organic semiconductors 2-2.2 Exiton transportation and dissociation 2-2.3 Charge transportation 2-3Traps 22 2-4 Interpretation of IV Characteristics 24 Chapter 3 Development of Organic photovoltaics and its future prospect. 27 3-1 General thin films fabrication methods 28 3-1.1 Spin coating 3-1.2 Spray coating 3-1.3 Dip coating 3-1.4 Ink jet printing 3-1.5 Electrophoresis deposition 3-1.6 Organic vapor phase deposition 3-1.7Thin film dry transfer technique 3-2 Basic structures of organic photovoltaics 35 3-2.1 Single layer device. 3-2.2 The ‘bilayer’ concept. 3-2.3 The ‘bulk heterojunction’ concept. 3-3 Extending device architectures 41 3-3.1 Spectrum coverage. 3-3.2 Tandem photovoltaic 3-4 Summary 45 Chapter4 Experiment.. 47 4-1 Materials 48 4-1.1 PEDOT:PSS 4-1.2 P3HT 4-1.3 PCBM 4-1.4 PDMS 4-2 Device fabrication 52 4-2.1 Substrate preparation 4-2.2 Hole transporting layer 4-2.3 Photoactive layer 4-2.4 Cathode electrode deposition 4-3Device measurements.. 54 4-3.1Device characterization: Current - Voltage measurement Chapter 5 Flexible photovoltaics fabrication 55 5-1 Strategy toward flexible optoelectronics 56 5-2 Performance of small area flexible devices 59 5-2.1 Effect of annealing temperature 5-2.2 Effect of back glass support 5-3 Flexible, large area photovoltaics approach 66 5-4 Summary 68 Chapter 6 Organic thin film stamping process. 69 6-1Feasibility analysis 70 6-1.1 Introduction 6-1.2 Atomic Force Microscopy & Scanning Electronic Microscopy 6-1.3 Optical properties of the tandem films 6-1.4 Photoluminescence of general PLED materials 6-1.5 Photoluminescence quenching in donor acceptor planar heterojunction 6-1.6 Performance of general photovoltaics made from stamping process 6-2 Substrate enhanced self-organization of photoactive films 90 6-2.1 Introduction 6-2.2 SEM & AFM examination of PDMS surface 6-2.3 Devices performance comparison to spin coating process 6-3 Concentration gradient on basic donor acceptor photovoltaics 103 6-3.1 Introduction 6-3.2 Details of stamping strategy 6-3.3 Devices performances of CGD concept 6-3.4 AFM result of donor-, acceptor-rich films 6-4 Stamping p-i-n structure polymer based photovoltaic 115 6-4.1 Introduction 6-4.2 Device performance of the charge extraction concept 6-5 Summary 122 Chapter7 Concluding remarks 123 Reference 126 Appendix A. Definition of excitons and polarons 136 B. Requirement of materials for organic photovoltaics 139 C. Interpretation of J-V characteristics of photovoltaics 144 Reference 152 | |
| dc.language.iso | en | |
| dc.subject | 光電高分子複合層結構 | zh_TW |
| dc.subject | 可撓曲有機光電元件 | zh_TW |
| dc.subject | flexible photovoltaics | en |
| dc.subject | tandem cells | en |
| dc.subject | multilayer devices | en |
| dc.subject | stamping process | en |
| dc.title | 高分子太陽能電池– 可撓性元件及多層結構製程技術 | zh_TW |
| dc.title | Polymer Photovoltaics – Techniques for flexible device and multilayer architecture construction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 朱治偉 | |
| dc.contributor.oralexamcommittee | 林金福,陳方中 | |
| dc.subject.keyword | 可撓曲有機光電元件,光電高分子複合層結構, | zh_TW |
| dc.subject.keyword | flexible photovoltaics,stamping process,multilayer devices,tandem cells, | en |
| dc.relation.page | 154 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 7.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
