請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40574完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴明宗(Ming-Zong Lai) | |
| dc.contributor.author | Yu-Hsuan Yang | en |
| dc.contributor.author | 楊鈺璇 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:51:52Z | - |
| dc.date.available | 2011-09-11 | |
| dc.date.copyright | 2008-09-11 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-30 | |
| dc.identifier.citation | Alessi, D.R., Andjelkovic, M., Caudwell, B., Cron, P., Morrice, N., Cohen, P., and Hemmings, B.A. (1996). Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 15, 6541-6551.
Andjelkovic, M., Alessi, D.R., Meier, R., Fernandez, A., Lamb, N.J.C., Frech, M., Cron, P., Cohen, P., Lucocq, J.M., and Hemmings, B.A. (1997). Role of translocation in the activation and function of protein kinase B. J. Biol. Chem. 272, 31515-31524. Arnold, L.D., Calderwood, D.J., Dixon, R.W., Johnston, D.N., Kamens, J.S., Munschauer, R., Rafferty, P., and Ratnofsky, S.E., (2000). Pyrrolo[2, 3, -d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I. Bioorg. Med. Chem. Lett. 10, 2167-2170. Artavanis-Tsakonas, S., Matsuno, K., and Fortini, M.E. (1995). Notch signaling. Science 268, 225-232. Baek, S.H., Kim, M.Y., Mo, J.S., Ann, E.J., Lee, K.S., Park, J.H., Seo, M.S., Choi, E.J., and Park, H.S. (2007) Zinc-induced downregulation of Notch signaling is associated with cytoplasmic retention of Notch1-IC and RBP-Jk via PI3k-Akt signaling pathway. Cancer lett. 255, 117-126. Barkett, M., and Gilmore, T.D. (1999). Control of apoptosis by Rel/NF-κB transcription factors. Oncogene 18, 6910-6924. Baron, M. (2003). An overview of the Notch signalling pathway. Semin. Cell. Dev. Biol 14, 113-119. Beverly, L.J., Felsher, D.W., and Capobianco, A.J. (2005). Suppression of p53 by Notch in lymphomagenesis: implications for initiation and regression. Cancer Res 16, 7159-7168. Brazil, D.P., Park, J., and Hemmings, B.A. (2002). PKB binding proteins getting in on the Akt. Cell 111, 293-303. Brazil, D.P., Yang, Z.Z., and Hemmings, B.A. (2004). Advances in protein kinase B signalling: AKTion on multiple fronts. Trends. Biochem. Sci. 29, 233-242. Brodbeck, D., Cron, P., and Hemmings, B.A. (1999). A human protein kinase Bγ with regulatory phosphorylation sites in the activation loop and in the C-terminal hydrophobic domain. J. Biol. Chem. 272,9133-9136. Brou, C., Logeat, F., Gupta, N., Bessia, C., LeBail, O., Doedens, J.R., Cumano, A., Roux, P., Black, R.A., and Israel, A. (2000). A novel proteolytic cleavage involved in Notch signaling the role of the disintegrin-metalloprotease TACE. Mol. Cell 5, 207-216. Burchat, A.F., Calderwood, D.J., Hirst, G.C., Holman, N.J., Johnston, D.N., Munschauer, R.M., Rafferty, P., and Tometzki, G.B. (2000). Pyrrolo[2, 3, -d] pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck II. Bioorg. Med. Chem. Lett. 10, 2171-2174. Burgering, B.M.T., and Medema, R.H. (2003). Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty. J. Leukoc. Biol 73, 689-701. Campese, A.F., Garbe, A.I., Zhang, F., Grassi, F., Screpanti, I., and von Boehmer, H. (2006). Notch1-dependent lymphomagenesis is assisted by but does not essentially require pre-TCR signaling. Blood 108, 305-310. Cardone, M.H., Roy, N., Stennicke, H.R., Salvesen, G.S., Franke, T.F., Stanbridge, E., Frisch, S., and Reed, J.C. (1998). Regulation of cell death protease caspase-9 by phosphorylation. Science 282, 1318-1321. Cheng, J.Q., Godwin, A.K., Bellacosa, A., Taguchi, T., Franke, T.F., Hamilton, T.C., Tsichlis, P.N., and Testa, J.R. (1992). AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc. Natl. Acad. Sci. U S A 89, 9267-9271. Ciofani, M., and Zuniga-Pflucker, J.C. (2005). Notch promotes survival of pre-T cells at the bold beta-selection checkpoint by regulating cellular metabolism. Nat. Immunol. 6, 881-888. Datta, S.R. (1997). AKT phosphorylation of BAD couples cell survival signals to the cell intrinsic death machinery. Cell 91, 231-241. Datta, S.R., Brunet, A., and Greenberg, M.E. (1999). Cellular survival: a play in three Akts. Genes Dev. 13, 2905-2927. Deveraux, Q.L., and Reed, J.C. (1999). IAP family proteins--suppressors of apoptosis. Genes Dev 13, 239-252. Dull, T., Zufferey, R., Kelly, M., Mandel, R.J., Nguyen, M., TRono, D., and Naldini, L. (1998) A third-generation lentivirus vector with a conditional packaging system. J. virol. 72, 8463-8471. Ellisen, L.W., Bird, J., West, D.C., Soreng, A.L., Reynolds, T.C., Smith, S.D., and Sklar, J. (1991). TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649-661 . Fang, T.C., Yashiro-Ohtani, Y., Del Bianco, C., Knoblock, D.M., Blacklow, S.C., and Pear, W.S. (2007). Notch directly regulates gata3 expression during T helper 2 cell differentiation. Immunity 27, 100-110. Filippa, N., Sable, C.L., Filloux, C., Hemmings, B., and Van Obberghen, E. (1999). Mechanism of protein kinase B activation by cyclic AMP-dependent protein kinase. Mol. Cell. Biol. 19, 4989-5000. Franke, T.F., Kaplan, D.R., and Cantley, L.C. (1997). PI3K: downstream AKTion blocks apoptosis. Cell 88, 435-437. Gardai, S.J., Hildeman, D.A., Frankel, S.K., Whitlock, B.B., Frasch, S.C., Borregaard, N., Marrack, P., Bratton, D.L., and Henson, P.M. (2004). xPhosphorylation of Bax Ser184 by Akt regulates it’s activity and apoptosis in neutrophils. J. Biol. Chem. 279, 21085-21095. Grabher, C., von Boehmer, H., and Look, A.T. (2006). Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat. Rev. Cancer 6, 347-359. Han, H., Tanigaki, K., Yamamoto, N., Kuroda, K., Yoshimoto, M., Nakahata, T., Ikuta, K., and Honjo, T. (2002). Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int. Immunol 14, 637-645. Hill, M.M., and Hemmings, B.A. (2002). Inhibition of protein kinase B/Akt implications for cancer therapy. Pharmacol. Ther. 93, 243-251. Hofer-Warbinek, R., Schmid, J.A., Stehlik, C., Binder, B.R., Lipp, J., and De Martin, R. (2000). Activation of NF-kB by XIAP, the X chromosome-linked inhibitor of apoptosis. Endothelial cells involves TAK1. J. Biol. Chem. 275, 22064–22068. Jacobson, M.D., Weil, M., and Raff, M.C. (1997). Programmed cell death in animal development. Cell 88, 347-354. Jarriault, S., Brou, C., Logeat, F., Schroeter, E.H., Kopan, R., and Israel, A. (1995). Signalling downstream of activated mammalian Notch. Nature 377, 355-358. Joutel, A., Corpechot, C., Ducros, A., Vahedi, K., Chabriat, H., Mouton, P., Alamowitch, S., Domenga, V., Cecillion, M., and Marechal, E. (1996). Notch 3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383, 707-710. Kelly, A.P., Finlay, D.K., Hinton, H.J., Clarke, R.G., Fiorini, E., Radtke, F., Cantrell, D.A., Cytos Biotechnology, A.G., and Zurich-Schlieren, S. (2007). Notch-induced T cell development requires phosphoinositide-dependent kinase 1. EMBO J. 26, 3441-3450. Kennedy, S.G., Wagner, A.J., Conzen, S.D., Jordan, J., Bellacosa, A., Tsichlis, P.N., and Hay, N. (1997). The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes. Dev. 11, 701-713. Klinakis, A., Szabolcs, M., Politi, K., Kiaris, H., Artavanis-Tsakonas, S., and Efstratiadis, A. (2006). Myc is a Notch1 transcriptional target and a requisite for Notch1-induced mammary tumorigenesis in mice. Proc. Natl. Acad. Sci. U S A 103, 9262-9267. Lehar, S.M., and Bevan, M.J. (2006). T cells develop normally in the absence of both Deltex1 and Deltex2. Mol. Cell. Biol. 26, 7358-7371. Leong, K.G., and Karsan, A. (2006). Recent insights into the role of Notch signaling in tumorigenesis. Blood 107, 2223-2233. Lieber, T., Kidd, S., and Young, M.W. (2002). Kuzbanian-mediated cleavage of Drosophila Notch. Genes. Dev. 16, 209-221. Liu, W.H., Hsiao, H.W., Tsou, W.I., and Lai, M.Z. (2007). Notch inhibits apoptosis by direct interference with XIAP ubiquitination and degradation. EMBO J. 26, 1660-1669. Liu, Z.J., Xiao, M., Balint, K., Smalley, K.S.M., Brafford, P., Qiu, R., Pinnix, C.C., Li, X., and Herlyn, M. (2006). Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-Kinase-Akt pathways and up-regulating N-Cadherin expression. Cancer Res. 66, 4182-4190. Logeat, F., Bessia, C., Brou, C., LeBail, O., Jarriault, S., Seidah, N.G., and Israel, A. (1998). The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc. Natl. Acad. Sci. U S A 95, 8108-8112. Maillard, I., Fang, T., and Pear, W.S. (2005). Regulation of lymphoid development, differentiation, and function by the Notch pathway. Annu. Rev. Immunol. 23,945-974. Majewski, N., Nogueira, V., Robey, R.B., and Hay, N. (2004). Akt Inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases. Mol. Cell. Biol. 24, 730-740. Malecki, M.J., Sanchez-Irizarry, C., Mitchell, J.L., Histen, G., Xu, M.L., Aster, J.C., and Blacklow, S.C. (2006). Leukemia-associated mutations within the Notch1 heterodimerization domain fall into at least two distinct mechanistic classes. Mol. Cell. Biol. 26, 4642-4651. Mao, C., Tili, E.G., Dose, M., Haks, M.C., Bear, S.E., Maroulakou, I., Horie, K., Gaitanaris, G.A., Fidanza, V., and Ludwig, T. (2007). Unequal contribution of Akt isoforms in the double-negative to double-positive thymocyte transition. J. Immunol. 178, 5443-5453. Maurer, U., Charvet, C., Wagman, A.S., Dejardin, E., and Green, D.R. (2006). Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol. Cell 21, 749-760. Miele, L., Golde, T., and Osborne, B. (2006). Notch signaling in cancer. Curr. Mol. Med. 6, 905-918. Minter, L.M., Turley, D.M., Das, P., Shin, H.M., Joshi, I., Lawlor, R.G., Cho, O.H., Palaga, T., Gottipati, S., and Telfer, J.C. (2005). Inhibitors of big gamma-secretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21. Nat. Immunol. 6, 680-688. Miyochi, H., Blomer, U., Takahashi, M., Gage, F.H., and Verma, I.M. (1998) Development of a self-inactivating lentivirus vector. J. Virol. 72, 8150-8157. Mufti, A.R., Burstein, E., Csomos, R.A., Graf, P.C.F., Wilkinson, J.C., Dick, R.D., Challa, M., Son, J.K., Bratton, S.B., and Su, G.L. (2006). XIAP is a copper binding protein deregulated in wilson's disease and other copper toxicosis disorders. Mol. Cell 21, 775-785. Mumm, J.S., Schroeter, E.H., Saxena, M.T., Griesemer, A., Tian, X., Pan, D.J., Ray, W.J., and Kopan, R. (2000). A ligand-induced extracellular cleavage regulates γ-secretase-like proteolytic activation of Notch1. Mol. Cell 5, 197-206. Mungamuri, S.K., Yang, X.H., Thor, A.D., and Somasundaram, K. (2006). Survival signaling by Notch1: mammalian target of rapamycin (mTOR)-dependent inhibition of p53. Cancer Res. 9, 4715-4724. Nair, P., Somasundaram, K., and Krishna, S. (2003) Activated Notch1 inhibits p53-induced apoptosis and sustains transformation by human papillomavirus type 16 E6 and E7 oncogenes through a PI3K-PKB/Akt-dependent pathway. J. Virol. 77, 7106-7112. Naldini, L., Blomer, U., Gallary, P., Ory, D., Mulligan, R., Gage, F.H., Verma, I.M., and Trono, D. (1996). In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263-279. Nam, Y., Sliz, P., Song, L., Aster, J.C., and Blacklow, S.C. (2006). Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell 124, 973-983. Nechushtan, A., Smith, C.L., Hsu, Y.T., and Youle, R.J. (1999). Conformation of the Bax c-terminus regulates subcellular location and cell death. EMBO J. 18, 2330-2341. O'Neil, J., Calvo, J., McKenna, K., Krishnamoorthy, V., Aster, J.C., Bassing, C.H., Alt, F.W., Kelliher, M., and Look, A.T. (2005). Activating Notch1 mutations in mouse models of T-ALL. Blood 2, 781-785. Ohba, N., Kiryu-Seo, S., Maeda, M., Muraoka, M., Ishii, M., and Kiyama, H. (2004). Transgenic mouse overexpressing the Akt reduced the volume of infarct area after middle cerebral artery occlusion. Neurosci. Lett. 359, 159-162. Osborne, B.A., Minter, L.M., (2007). Notch signalling during peripheral T-cell activation and differentiation. Nat. Rev. Immunol. 7, 64-75. Oswald, F., Tauber, B., Dobner, T., Bourteele, S., Kostezka, U., Adler, G., Liptay, S., and Schmid, R.M. (2001). p300 acts as a transcriptional coactivator for mammalian Notch-1. Mol.Cell. Biol. 21, 7761-7774. Palomero, T., Sulis, M.L., Cortina, M., Real, P.J., Barnes, K., Ciofani, M., Caparros, E., Buteau, J., Brown, K., and Perkins, S.L. (2007). Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat. Med. 13, 1203-1210. Parcellier, A., Tintignac, L.A., Zhuravleva, E., and Hemmings, B.A. (2008) PKB and the mitochondria: Akting on apoptosis. Cell. Signal. 20, 21-30. Pear, W.S. (1996). Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J. Exp. Med. 183, 2283-2291. Peterson, R.T., and Schreiber, S.L. (1999). Kinase phosphorylation: keeping it all in the family. Curr. Biol. 9, 521-524. Pui, J.C., Allman, D., Xu, L., DeRocco, S., Karnell, F.G., Bakkour, S., Lee, J.Y., Kadesch, T., Hardy, R.R., and Aster, J.C. (1999). Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11, 299-308. Radtke, F., Wilson, A., Stark, G., Bauer, M., van Meerwijk, J., MacDonald, H.R., and Aguet, M. (1999). Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547-558. Rangarajan, A., Syal, R., Selvarajah, S., Chakrabarti, O., Sarin, A., and Krishna, S. (2001). Activated Notch1 signaling cooperates with papillomavirus oncogenes in transformation and generates resistance to apoptosis on matrix withdrawal through PKB/Akt. Virology 286, 23-30. Reedijk, M., Odorcic, S., Chang, L., Zhang, H., Miller, N., McCready, D.R., Lockwood, G., and Egan, S.E. (2005). High-level coexpression of Jag1 and Notch1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. 65, 8530-8537. Riedl, S.J., and Shi, Y. (2004). Molecular mechanisms of caspase regulation during apoptosis. Nat. Rev. Mol. Cell. Biol. 5, 897-907. Roy, M., Pear, W.P., and Aster J.C. (2007) The multifaceted role of Notch in cancer. Curr. Opin. Genet. Dev. 17, 52-59. Rutz, S., Mordmuller, B., Sakano, S., and Scheffold, A. (2005). Notch ligands Delta-like1, Delta-like4 and Jagged1 differentially regulate activation of peripheral T helper cells. Eur. J. Immunol. 35, 2443-2451. Sable, C.L., Filippa, N., Hemmings, B., and Van Obberghen, E. (1997). cAMP stimulates protein kinase B in a wortmannin-insensitive manner. FEBS Lett. 409, 253-257. Sade, H., Krishna, S., and Sarin, A. (2004). The anti-apoptotic effect of Notch-1 requires p56lck-dependent, Akt/PKB-mediated Signaling in T Cells. J. Biol. Chem. 279, 2937-2944. Sambandam, A., Maillard, I., Zediak, V.P., Xu, L., Gerstein, R.M., Aster, J.C., Pear, W.S., and Bhandoola, A. (2005). Notch signaling controls the generation and differentiation of early T lineage progenitors. Nat. Immunol. 6, 663-670. Santagata, S., Demichelis, F., Riva, A., Varambally, S., Hofer, M.D., Kutok, J.L., Kim, R., Tang, J., Montie, J.E., and Chinnaiyan, A.M. (2004). Jagged1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res. 64, 6854-6857. Sasaki, K., Sato, M., and Umezawa, Y. (2003). Fluorescent indicators for Akt/Protein kinase B and dynamics of Akt activity visualized in iving cells. J. Biol. Chem. 278, 30945-30951. Schroeder, T., Kohlhof, H., Rieber, N., and Just, U. (2003). Notch signaling induces multilineage myeloid differentiation and up-regulates PU. 1 expression 1. J. Immunol. 170, 5538-5548. Schroeter, E.H., Kisslinger, J.A., and Kopan, R. (1998). Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382-386. Schmitt, T.M., and Zuniga-Pflucker, J.C. (2002). Induction of T cell development from hematopoietic progenitor cells by Delta-like-1 in Vitro. Immunity 17, 749-756. Schwertfeger, K.L., Richert, M.M., and Anderson, S.M. (2001). Mammary gland involution is delayed by activated Akt in transgenic mice. Mol. Endocrinol. 15, 867-881. Selkoe, D., and Kopan, R. (2003). Notch and presenilin: regulated intramembrane proteolysis links development and degeneration. Annu. Rev. Neurosci. 26, 565-597. Settings, M. (1999). Kinase phosphorylation: keeping it all in the family. Curr. Biol. 9, 521-524. Song, G., Ouyang, G., and Bao, S. (2005) The activation of Akt/PKB signaling pathway and cell survival. J. Cell. Mol. Med. 9, 59-71. Stephens, L., Anderson, K., Stokoe, D., Erdjument-Bromage, H., Painter, G.F., Holmes, A.B., Gaffney, P.R.J., Reese, C.B., McCormick, F., and Tempst, P. (1998). Protein kinase B kinases that mediate phosphatidylinositol 3, 4, 5-trisphosphate- dependent Activation of protein kinase B. Science 279, 710-714. Storck, S., Delbos, F., Stadler, N., Thirion-Delalande, C., Bernex, F., Verthuy, C., Ferrier, P., Weill, J.C., and Reynaud, C.A. (2005). Normal immune system development in mice lacking the deltex-1 ring finger domain. Mol. Cell. Biol. 25, 1437-1445. Tan, J., and Hallahan, D.E. (2003). Radiation-induced PI3K/Akt activation down regulates mitochondrial release of cytochrome C and subsequent cleavage of caspases. Cancer Res. 63, 7663-7667. Tanigaki, K., Kuroda, K., Han, H., and Honjo, T. (2003). Regulation of B cell development by Notch/RBP-J signaling. Semin. Immunol. 15, 113-119. Tanigaki, K., Nogaki, F., Takahashi, J., Tashiro, K., Kurooka, H., and Honjo, T. (2001). Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron 29, 45-55. Thomas, C.C., Deak, M., Alessi, D.R., and van Aalten, D.M.F. (2002). High- resolution structure of the pleckstrin homology domain of protein kinase B/Akt bound to phosphatidylinositol (3, 4, 5)-trisphosphate. Curr. Biol. 12, 1256-1262. Uyttendaele, H., Marazzi, G., Wu, G., Yan, Q., Sassoon, D., and Kitajewski, J. (1996). Notch4/int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Development 122, 2251-2259. Weijzen, S., Rizzo, P., Braid, M., Vaishnav, R., Jonkheer, S.M., Zlobin, A., Osborne, B.A., Gottipati, S., Aster, J.C., and Hahn, W.C. (2002). Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat. Med. 8, 979-986. Weinmaster, G.., Roberts, V.J., Lemke, G. (1992). Notch2: a second mammalian Notch gene. Development 116, 931-941. Weng, A.P., Ferrando, A.A., Lee, W., Morris, J.P., Silverman, L.B., Sanchez-Irizarry, C., Blacklow, S.C., Look, A.T., and Aster, J.C. (2004). Activating mutations of Notch1 in human T cell acute lymphoblastic leukemia. Science 306, 269-271. Weng, A.P., Millholland, J.M., Yashiro-Ohtani, Y., Arcangeli, M.L., Lau, A., Wai, C., del Bianco, C., Rodriguez, C.G., Sai, H., and Tobias, J. (2006). c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 20, 2096-2109. Wilson, A., MacDonald, H.R., and Radtke, F. (2001). Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. J. Exp. Med. 194, 1003-1012. Wu, L., Sun, T., Kobayashi, K., Gao, P., and Griffin, J.D. (2002). Identification of a family of mastermind-like transcriptional coactivators for mammalian Notch receptors. Mol. Cell. Biol. 22, 7688-7700. Wyllie, A.H., Kerr, J.F.R., and Currie, A.R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257. Xin, M., and Deng, X. (2005). Nicotine inactivation of the proapoptotic function of Bax through phosphorylation. J. Biol. Chem. 280, 10781-10789. Yamaguchi, K., Nagai, S.I., Ninomiya-Tsuji, J., Nishita, M., Tamai, K., Irie, K., Ueno, N., Nishida, E., Shibuya, H., and Matsumoto, K. (1999) XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J. 18, 179-187. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40574 | - |
| dc.description.abstract | Notch 訊息的傳遞可以調控多項生物性功能,而已知Notch可藉由活化PI3K-Akt的訊息傳遞調控細胞凋亡。但目前對於Notch如何活化PI3K-Akt訊息並不清楚。在本研究中,我們探討Notch 活化 Akt 的幾個可能途徑: ㄧ個是透過Notch本身的轉錄能力,另ㄧ個藉由先活化Lck ,第三個則經由XIAP的訊息,而造成Akt 之活化。我們先在利用Notch配體Jagged 1與DLL1 刺激DO11.10 與NIH3T3 細胞皆可造成 Akt 的活化。證實Notch 的活化確實能誘導 Akt 的活化。在Notch 活化 Akt 是否透過轉錄活性方面,我們使用不同NICD的突變型。在探討Lck的參與方面,我們利用Lck抑制劑阻斷Lck的活化,觀察Akt活化是否受影響。在分析XIAP角色的方面,我們大量表現XIAP或下調細胞內的XIAP,研究其對Akt活化的影響。我們發現Notch 活化 Akt於DO11.10和NIH3T3細胞有些不同。Notch在DO11.10細胞活化Akt涉及Notch的轉錄活性,也需要Lck的參與,而XIAP的存在也是需要的。Notch在NIH3T3細胞則除利用其轉錄活性參與之外,不具轉錄活性的TAD也可以尚未清楚的機制活化Akt,但XIAP則未參與Notch活化Akt。我們的結果顯示了多種訊息分子參與了Notch引發Akt的活化,而詳細的活化機制需要更近一步的探討。 | zh_TW |
| dc.description.abstract | Notch signaling regulate several key biological functions, Notch inhibits apoptosis through activation of PI3K-Akt signaling. The mechanism how Notch activates PI3K-Akt remains unclear. In this study, we examined three possible mechanisms involved in the activation of Akt by Notch. First, Notch may activate Akt through transcription activation of target genes. Second, Notch may activate Lck for subsequent activation of Akt. Third, Notch may stimulate Akt through enhanced XIAP signaling. We first used Notch ligands Jagged1 and Delta-like ligand1(DLL1) to stimulate DO11.10 T cell hybridoma and NIH3T3 fibroblast, and detected Akt phosphorylation, confirming the capacity of Notch to activate Akt.
To determine the requirement of Notch transcription activity, we used different mutants carrying truncated forms of Notch intracellular domain (NICD). To study the potential involvement of Lck, Notch induced Akt activation was evaluated by using Lck inhibitor to block Lck activation. To investigate the possible involvement of XIAP, effect on Akt activation was determined when XIAP was either overexpressed or downregulated. We found similarity and difference between DO11.10 and NIH3T3 cells on the activation of Akt by Notch. In DO11.10 cells, the activation of Akt by Notch requires the transcription activity of Notch, Lck activation, and presence of XIAP. In NIH3T3 cells, the activation of Akt by Notch is involved the transcription activity of Notch and its transcription-inactive TAD domain, acting in unknown mechanism, but not XIAP. Our results illustrate the involvement of multiple signaling molecules in Notch-stimulated Akt activation, and point to the necessity for further investigation the detailed activation mechanisms. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:51:52Z (GMT). No. of bitstreams: 1 ntu-97-R95449011-1.pdf: 2297447 bytes, checksum: b7a09e2b7aa05d971431763fa14f5d4b (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 中文摘要..................................................i
英文摘要.................................................ii 目錄.....................................................iv 第一章 序論.............................................1 1.1.1 Notch 簡介......................................1 1.1.2 Notch調節細胞育 (development)及分化 (differentiation)...............................3 1.1.3 Notch 與致癌基因 (oncogene).....................4 1.2.1 Akt 簡介........................................6 1.2.2 PKB/Akt 活化的調節..............................7 1.2.3 Akt 調節細胞死亡 (cell death)...................7 1.3 研究目的與研究方向..............................8 第二章 實驗材料與方法..................................11 2.1 細胞株及其培養...................................11 2.2 藥品與試劑.......................................11 2.3 抗體.............................................12 2.4 小分子干擾核醣核酸下調 (siRNA knockdown).........12 2.4.1小分子干擾核醣核酸設計與質體構築................13 2.4.2 Lentivirus 反轉錄病毒製備......................14 2.4.3 Lentivirus 反轉錄病毒效價測定..................16 2.4.4 Lentivirus 反轉錄病毒感染......................17 2.5 固著式Notch 配體活化Notch 受體...................17 2.6 質體 DNA的轉染 (transfection)....................18 2.6.1 Calcium phosphate..............................18 2.6.2 電穿孔法(electroporation)......................18 2.6.3 反轉錄病毒感染法 (retroviral infection)........19 2.7 細胞萃取液的製備.................................20 2.8 西方墨點法 (Western blot)........................20 2.9 重組蛋白質純化 (purification of recombinant proteins)........................................21 第三章 結果............................................22 3.1 固著式 Notch 配體在 DO11.10 中可活化 Notch 訊息..22 3.2 Notch配體的刺激於 DO11.10 細胞與 NIH3T3 細胞中皆可 誘導Akt活化.......................................22 3.3 TAD domain 的轉錄能力是Notch在 DO11.10 細胞活化 Akt所需要.........................................24 3.4 Notch在 NIH3T3 細胞可藉由轉錄能力或TAD本身活化Akt25 3.5 大量表現NICD於 DO11.10 細胞中可誘導 Lck 活化.....25 3.6 抑制 Lck 的訊息傳遞同時阻斷Notch 活化 Akt 的訊息傳 遞...............................................25 3.7 於DO11.10 細胞與 NIH3T3細胞中大量表現野生型 (WT) 與突變型 XIAP不會誘導 Akt 活化...................26 3.8 XIAP siRNA 成功下調 NIH3T3 細胞內生性 XIAP.......27 3.9 下調XIAP 延遲 Notch在NIH3T3 細胞中誘導的Akt活化..28 3.10下調 XIAP抑制Notch在DO11.10 細胞中誘導的Akt活化..29 第四章 討論............................................30 圖表.....................................................35 參考資料.................................................53 附錄.....................................................64 | |
| dc.language.iso | zh-TW | |
| dc.subject | Akt 活化 | zh_TW |
| dc.subject | Notch 訊息傳遞 | zh_TW |
| dc.subject | Notch | en |
| dc.subject | Akt activation | en |
| dc.title | 探討Notch訊息活化Akt之機制 | zh_TW |
| dc.title | Study on the mechanism of the Notch-mediated Akt activation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許秉寧,繆希椿 | |
| dc.subject.keyword | Notch 訊息傳遞,Akt 活化, | zh_TW |
| dc.subject.keyword | Notch,Akt activation, | en |
| dc.relation.page | 66 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-31 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 2.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
