Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40572Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 張紹光 | |
| dc.contributor.author | Yu-Mei Sun | en |
| dc.contributor.author | 孫友梅 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:51:48Z | - |
| dc.date.available | 2013-08-05 | |
| dc.date.copyright | 2008-08-05 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-29 | |
| dc.identifier.citation | 1. 行政院衛生署疾病管制局。院內感染監視通報系統。傳染病統計暨監視年報。95: 32-36,2007。
2. 張上淳、陳美文、林美智、胡幼圃。台灣人用抗生素與動物用抗生素使用量之調查研究。感染控制雜誌。13: 334-345,2003。 3. 楊采菱、洪哲倫、印筱娟。台灣地區1997-2003年住院病人抗生素使用報告。感染控制雜誌。16: 299-303,2006。 4. 楊采菱。全國微生物抗藥性監測計畫。感染控制雜誌。15,2005。 5. Alonso A, Rojo F, Martínez JL. Environmental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective of their origin. Environ Microbiol. 1: 421-30, 1999. 6. Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci. 289: 321-31, 1980. 7. Andrade SS, Jones RN, Gales AC, Sader HS. Increasing prevalence of antimicrobial resistance among Pseudomonas aeruginosa isolates in Latin American medical centres: 5 year report of the SENTRY Antimicrobial Surveillance Program (1997-2001). J Antimicrob Chemother. 52: 140-1, 2003. 8. Bert F, Branger C, Lambert-Zechovsky N. Identification of PSE and OXA beta-lactamase genes in Pseudomonas aeruginosa using PCR-restriction fragment length polymorphism. J Antimicrob Chemother. 50: 11-8, 2002. 9. Bonomo RA, Szabo D. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin Infect Dis. 43: S49-56, 2006. 10. Borovinskaya MA, Pai RD, Zhang W, Schuwirth BS, Holton JM, Hirokawa G, Kaji H, Kaji A, Cate JH. Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nat Struct Mol Biol. 14: 727-32, 2007. 11. Bouallegue O, Mzoughi R, Weill FX, Mahdhaoui N, Ben Salem Y, Sboui H, Grimont F, Grimont PA. Outbreak of Pseudomonas putida bacteraemia in a neonatal intensive care unit. J Hosp Infect. 57: 88-91, 2004. 12. Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 14: 933-51, 2001 13. Bush K. Characterization of beta-lactamases. Antimicrob Agents Chemother. 33: 259-63, 1989. 14. Bush K. Classification of beta-lactamases: groups 1, 2a, 2b, and 2b'. Antimicrob Agents Chemother. 33: 264-70, 1989. 15. Bush K. Classification of beta-lactamases: groups 2c, 2d, 2e, 3, and 4. Antimicrob Agents Chemother. 33: 271-6, 1989. 16. Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 39: 1211-33, 1995. 17. Castanheira M, Toleman MA, Jones RN, Schmidt FJ, Walsh TR. Molecular characterization of a beta-lactamase gene, blaGIM-1, encoding a new subclass of metallo-beta-lactamase. Antimicrob Agents Chemother. 48: 4654-61, 2004. 18. Cavallo JD, Hocquet D, Plesiat P, Fabre R, Roussel-Delvallez M, GERPA. Susceptibility of Pseudomonas aeruginosa to antimicrobials: a 2004 French multicentre hospital study. J Antimicrob Chemother. 59: 1021-4, 2007. 19. Chanawong A, M'Zali FH, Heritage J, Lulitanond A, Hawkey PM. SHV-12, SHV-5, SHV-2a and VEB-1 extended-spectrum beta-lactamases in Gram-negative bacteria isolated in a university hospital in Thailand. J Antimicrob Chemother. 48: 839-52, 2001. 20. Chang SC, Hsieh WC, Liu CY. High prevalence of antibiotic resistance of common pathogenic bacteria in Taiwan. Diagn Microbiol Infect Dis. 36: 107-112, 2000. 21. Daly JA, Boshard R, Matsen JM. Differential primary plating medium for enhancement of pigment production by Pseudomonas aeruginosa. J Clin Microbiol. 19: 742-743, 1984. 22. Daly M, Power E, Bjorkroth J, Sheehan P, O'Connell A, Colgan M, Korkeala H, Fanning S. Molecular analysis of Pseudomonas aeruginosa: epidemiological investigation of mastitis outbreaks in Irish dairy herds. Appl Environ Microbiol. 65: 2723-2729, 1999. 23. Danel F, Hall LM, Duke B, Gur D, Livermore DM. OXA-17, a further extended-spectrum variant of OXA-10 beta-lactamase, isolated from Pseudomonas aeruginosa. Antimicrob Agents Chemother. 43: 1362-6, 1999. 24. Danel F, Hall LM, Gur D, Livermore DM. OXA-14, another extended-spectrum variant of OXA-10 (PSE-2) beta-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother. 39: 1881-4, 1995. 25. Danel F, Hall LM, Gur D, Livermore DM. OXA-16, a further extended-spectrum variant of OXA-10 beta-lactamase, from two Pseudomonas aeruginosa isolates. Antimicrob Agents Chemother. 42: 3117-22, 1998. 26. Datta N, Kontomichalou P. Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature. 208: 239-41, 1965. 27. Davies J, Gorini L, Davis BD. Misreading of RNA codewords induced by aminoglycoside antibiotics. Mol Pharmacol. 1: 93-106, 1965. 28. De Champs C, Poirel L, Bonnet R, Sirot D, Chanal C, Sirot J, Nordmann P. Prospective survey of beta-lactamases produced by ceftazidime-resistant Pseudomonas aeruginosa isolated in a French hospital in 2000. Antimicrob Agents Chemother 46: 3031-4, 2002. 29. de Macedo JL, Santos JB. Bacterial and fungal colonization of burn wounds. Mem Inst Oswaldo Cruz. 100: 535-9, 2005. 30. Diamond SS, Ewing DE, Cadwell GA. Fatal bronchopneumonia and dermatitis caused by Pseudomonas aeruginosa in an Atlantic bottle-nosed dolphin. J Am Vet Med Assoc. 175: 984-7, 1979. 31. Dubois V, Arpin C, Noury P, Andre C, Coulange L, Quentin C. Prolonged outbreak of infection due to TEM-21-producing strains of Pseudomonas aeruginosa and Enterobacteria in a nursing home. J Clin Microbiol. 43: 4129-38, 2005. 32. Finnan S, Morrissey JP, O'Gara F, Boyd EF. Genome diversity of Pseudomonas aeruginosa isolates from cystic fibrosis patients and the hospital environment. J Clin Microbiol. 42: 5783-92, 2004. 33. Fritsche TR, Sader HS, Jones RN. Antimicrobial activity of ceftobiprole, a novel anti-methicillin-resistant Staphylococcus aureus cephalosporin, tested against contemporary pathogens: results from the SENTRY Antimicrobial Surveillance Program (2005-2006). Diagn Microbiol Infect Dis. 61: 86-95, 2008. 34. Girlich D, Naas T, Leelaporn A, Poirel L, Fennewald M, Nordmann P. Nosocomial spread of the integron-located veb-1-like cassette encoding an extended-pectrum beta-lactamase in Pseudomonas aeruginosa in Thailand. Clin Infect Dis. 34: 603-11, 2002. 35. Giske CG, Libisch B, Colinon C, Scoulica E, Pagani L, Füzi M, Kronvall G, Rossolini GM. Establishing clonal relationships between VIM-1-like metallo-beta-lactamase-producing Pseudomonas aeruginosa strains from four European countries by multilocus sequence typing. J Clin Microbiol. 44: 4309-15, 2006. 36. Grundmann H, Schneider C, Hartung D, Daschner FD, Pitt TL. Discriminatory power of three DNA-based typing techniques for Pseudomonas aeruginosa. J Clin Microbiol. 33: 528-34, 1995. 37. Guardabassi L, Schwarz S, Lloyd DH. Pet animals as reservoirs of antimicrobial-resistant bacteria. J Antimicrob Chemother. 54: 321-32, 2004. 38. Hall LM, Livermore DM, Gur D, Akova M, Akalin HE. OXA-11, an extended-spectrum variant of OXA-10 (PSE-2) beta-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother. 37: 1637-44, 1993. 39. Hariharan H, Coles M, Poole D, Lund L, Page R. Update on antimicrobial susceptibilities of bacterial isolates from canine and feline otitis externa. Can Vet J. 47: 253-255, 2006. 40. Henrichfreise B, Wiegand I, Pfister W, Wiedemann B. Resistance mechanisms of multiresistant Pseudomonas aeruginosa strains from Germany and correlation with hypermutation. Antimicrob Agents Chemother. 51: 4062-70, 2007. 41. Herbert S, Halvorsen DS, Leong T, Franklin C, Harrington G, Spelman D. Large outbreak of infection and colonization with gram-negative pathogens carrying the metallo- beta -lactamase gene blaIMP-4 at a 320-bed tertiary hospital in Australia. Infect Control Hosp Epidemiol. 28: 98-101, 2007. 42. Higgins PG, Fluit AC, Milatovic D, Verhoef J, Schmitz FJ. Mutations in GyrA, ParC, MexR and NfxB in clinical isolates of Pseudomonas aeruginosa. Int J Antimicrob Agents. 21: 409-13, 2003. 43. Hirokawa G, Kiel MC, Muto A, Selmer M, Raj VS, Liljas A, Igarashi K, Kaji H, Kaji A. Post-termination complex disassembly by ribosome recycling factor, a functional tRNA mimic. EMBO J. 21: 2272-81, 2002. 44. Hooper DC. Emerging mechanisms of fluoroquinolone resistance. Emerg Infect Dis. 7: 337-41, 2001. 45. Hillier A, Alcorn JR, Cole LK, Kowalski JJ. Pyoderma caused by Pseudomonas aeruginosa infection in dogs: 20 cases. Vet Dermatol. 17: 432-9, 2006. 46. Hsueh PR, Chen ML, Sun CC, Chen WH, Pan HJ, Yang LS, Chang SC, Ho SW, Lee CY, Hsieh WC, Luh KT. Antimicrobial drug resistance in pathogens causing nosocomial infections at a university hospital in Taiwan, 1981-1999. Emerg Infect Dis. 8: 63-68, 2002. 47. Hsueh PR, Teng LJ, Pan HJ, Chen YC, Sun CC, Ho SW, Luh KT. Outbreak of Pseudomonas fluorescens bacteremia among oncology patients. J Clin Microbiol. 36: 2914-7, 1998. 48. Huang YT, Chang SC, Lauderdale TL, Yang AJ, Wang JT. Molecular epidemiology of carbapenem-resistant Pseudomonas aeruginosa carrying metallo-beta-lactamase genes in Taiwan. Diagn Microbiol Infect Dis. 59: 211-6, 2007. 49. Ishii Y, Alba J, Kimura S, Yamaguchi K. Evaluation of antimicrobial activity of beta-lactam antibiotics by Etest against clinical isolates from 100 medical centers in Japan (2004). Diagn Microbiol Infect Dis. 55: 143-148, 2006. 50. Ishii Y, Tateda K, Yamaguchi K, the JARS. Evaluation of antimicrobial susceptibility for beta-lactams using the Etest method against clinical isolates from 100 medical centers in Japan (2006). Diagn Microbiol Infect Dis. 60: 177-83, 2008. 51. Jaurin B, Grundstrom T. ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary rigin from that of beta-lactamases of the penicillinase type. Proc Natl Acad Sci U S A. 78: 4897-901, 1981. 52. Jiang X, Zhang Z, Li M, Zhou D, Ruan F, Lu Y. Detection of extended-spectrum beta-lactamases in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 50: 2990-5, 2006. 53. Johansen HK, Moskowitz SM, Ciofu O, Pressler T, Høiby N. Spread of colistin resistant non-mucoid Pseudomonas aeruginosa among chronically infected Danish cystic fibrosis patients. J Cyst Fibros. 19: xxx-xxx, 2008 (In press). 54. Johnson JK, Arduino SM, Stine OC, Johnson JA, Harris AD. Multilocus sequence typing compared to pulsed-field gel electrophoresis for molecular typing of Pseudomonas aeruginosa. J Clin Microbiol. 45: 3707-12, 2007. 55. Juan C, Maciá MD, Gutiérrez O, Vidal C, Pérez JL, Oliver A. Molecular mechanisms of beta-lactam resistance mediated by AmpC hyperproduction in Pseudomonas aeruginosa clinical strains. Antimicrob Agents Chemother. 49: 4733-8, 2005. 56. Kalai Blagui S, Achour W, Abbassi MS, Bejaoui M, Abdeladhim A, Ben Hassen A. Nosocomial outbreak of OXA-18-producing Pseudomonas aeruginosa in Tunisia. Clin Microbiol Infect. 13: 794-800, 2007. 57. Khan NH, Ishii Y, Kimata-Kino N, Esaki H, Nishino T, Nishimura M, Kogure K. Isolation of Pseudomonas aeruginosa from open ocean and comparison with freshwater, clinical, and animal isolates. Microb Ecol. 53: 173-86, 2007. 58. Kingsford NM, Raadsma HW. The occurrence of Pseudomonas aeruginosa in fleece washings from sheep affected and unaffected with fleece rot. Vet Microbiol. 54: 275-285, 1997. 59. Kodaka H, Iwata M, Yumoto S, Kashitani F. Evaluation of a new agar medium containing cetrimide, kanamycin and nalidixic acid for isolation and enhancement of pigment production of Pseudomonas aeruginosa in clinical samples. J Basic Microbiol. 43: 407-413, 2003. 60. Köhler T, Epp SF, Curty LK, Pechère JC. Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol. 181: 6300-5, 1999. 61. Lambert PA. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med. 95: 22-26, 2002. 62. Las Heras A, Vela AI, Fernandez E, Casamayor A, Dominguez L, Fernandez- Garayzabal JF. DNA macrorestriction analysis by pulsed-field gel electrophoresis of Pseudomonas aeruginosa isolates from mastitis in dairy sheep. Vet Rec. 151: 670-672, 2002. 63. Lau GW, Ran H, Kong F, Hassett DJ, Mavrodi D. Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect Immun. 72: 4275-4278, 2004. 64. Lauderdale TL, Clifford McDonald L, Shiau YR, Chen PC, Wang HY, Lai JF, Ho M; TSAR Participating Hospitals. The status of antimicrobial resistance in Taiwan among gram-negative pathogens: the Taiwan surveillance of antimicrobial resistance (TSAR) program, 2000. Diagn Microbiol Infect Dis. 48: 211-219, 2004. 65. Lee S, Park YJ, Kim M, Lee HK, Han K, Kang CS, Kang MW. Prevalence of Ambler class A and D beta-lactamases among clinical isolates of Pseudomonas aeruginosa in Korea. J Antimicrob Chemother. 56: 122-7, 2005. 66. Lockhart SR, Abramson MA, Beekmann SE, Gallagher G, Riedel S, Diekema DJ, Quinn JP, Doern GV. Antimicrobial resistance among Gram-negative bacilli causing infections in intensive care unit patients in the United States between 1993 and 2004. J Clin Microbiol. 45: 3352-9, 2007. 67. Lopez-Romalde S, Magarinos B, Ravelo C, Toranzo AE, Romalde JL. Existence of two O-serotypes in the fish pathogen Pseudomonas anguilliseptica. Vet Microbiol. 94: 325-333, 2003. 68. Luzzaro F, Mantengoli E, Perilli M, Lombardi G, Orlandi V, Orsatti A, Amicosante G, Rossolini GM, Toniolo A. Dynamics of a nosocomial outbreak of multidrug-resistant Pseudomonas aeruginosa producing the PER-1 extended-spectrum beta-lactamase. J Clin Microbiol. 39: 1865-70, 2001. 69. Marchandin H, Jean-Pierre H, De Champs C, Sirot D, Darbas H, Perigault PF, Carriere C. Production of a TEM-24 plasmid-mediated extended-spectrum beta-lactamase by a clinical isolate of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 44: 213-6, 2000. 70. Martins AF, Zavascki AP, Gaspareto PB, Barth AL. Dissemination of Pseudomonas aeruginosa producing SPM-1-like and IMP-1-like metallo-beta-lactamases in hospitals from southern Brazil. Infection. 35: 457-60, 2007. 71. Martín JF, Casqueiro J, Kosalková K, Marcos AT, Gutiérrez S. Penicillin and cephalosporin biosynthesis: mechanism of carbon catabolite regulation of penicillin production. Antonie Van Leeuwenhoek. 75:21-31, 1999. 72. Masterton RG, Kuti JL, Turner PJ, Nicolau DP. The OPTAMA programme: utilizing MYSTIC (2002) to predict critical pharmacodynamic target attainment against nosocomial pathogens in Europe. J Antimicrob Chemother. 55: 71-7, 2005. 73. Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T. Contribution of the MexX-MexY-oprM efflux system to intrinsic resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 44: 2242-6, 2000. 74. McDonald LC, Chen MT, Lauderdale TL, Ho M. The use of antibiotics critical to human medicine in food-producing animals in Taiwan. J Microbiol Immunol Infect. 34: 97-102, 2001. 75. Meyer E, Schwab F, Gastmeier P, Rueden H, Daschner FD. Surveillance of antimicrobial use and antimicrobial resistance in German intensive care units (SARI): a summary of the data from 2001 through 2004. Infection. 34: 303-309, 2006. 76. Meyer JM, Stintzi A, De Vos D, Cornelis P, Tappe R, Taraz K, Budzikiewicz H. Use of siderophores to type pseudomonads: the three Pseudomonas aeruginosa pyoverdine systems. Microbiology. 143: 35-43, 1997. 77. Misumi M, Nishimura T, Komai T, Tanaka N. Interaction of kanamycin and related antibiotics with the large subunit of ribosomes and the inhibition of translocation. Biochem Biophys Res Commun. 84: 358-65, 1978. 78. Moore RA, Chan L, Hancock RE. Evidence for two distinct mechanisms of resistance to polymyxin B in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 26: 539-45, 1984. 79. Morita Y, Murata T, Mima T, Shiota S, Kuroda T, Mizushima T, Gotoh N, Nishino T, Tsuchiya T. Induction of mexCD-oprJ operon for a multidrug efflux pump by disinfectants in wild-type Pseudomonas aeruginosa PAO1. J Antimicrob Chemother. 51: 991-4, 2003. 80. Mugnier P, Dubrous P, Casin I, Arlet G, Collatz E. A TEM-derived extended-spectrum beta-lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 40: 2488-93, 1996. 81. M'Zali FH, Heritage J, Gascoyne-Binzi DM, Snelling AM, Hawkey PM. PCR single strand conformational polymorphism can be used to detect the gene encoding SHV-7 extended-spectrum beta-lactamase and to identify different SHV genes within the same strain. J Antimicrob Chemother. 41: 123-5, 1998. 82. Naas T, Nordmann P. OXA-type beta-lactamases. Curr Pharm Des. 5: 865-79, 1999. 83. Naas T, Philippon L, Poirel L, Ronco E, Nordmann P. An SHV-derived extended-spectrum beta-lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 43: 1281-4, 1999. 84. Naas T, Poirel L, Karim A, Nordmann P. Molecular characterization of In50, a class 1 integron encoding the gene for the extended-spectrum beta-lactamase VEB-1 in Pseudomonas aeruginosa. FEMS Microbiol Lett. 176: 411-9, 1999. 85. National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1992- April 2000, issued June 2000. Am J Infect Control. 28: 429-48, 2000. 86. Neonakis IK, Scoulica EV, Dimitriou SK, Gikas AI, Tselentis YJ. Molecular epidemiology of extended-spectrum beta-lactamases produced by clinical isolates in a university hospital in Greece: detection of SHV-5 in Pseudomonas aeruginosa and prevalence of SHV-12. Microb Drug Resist. 9: 161-5, 2003. 87. Nestorovich EM, Sugawara E, Nikaido H, Bezrukov SM. Pseudomonas aeruginosa porin OprF: properties of the channel. J Biol Chem. 281: 16230-7, 2006. 88. Nishimori E, Kita-Tsukamoto K, Wakabayashi H. Pseudomonas plecoglossicida sp. nov., the causative agent of bacterial haemorrhagic ascites of ayu, Plecoglossus altivelis. Int J Syst Evol Microbiol. 50: 83-89, 2000. 89. Nordmann P, Ronco E, Naas T, Duport C, Michel-Briand Y, Labia R. Characterization of a novel extended-spectrum beta-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother. 37: 962-9, 1993. 90. Ouellette M, Bissonnette L, Roy PH. Precise insertion of antibiotic resistance determinants into Tn21-like transposons: nucleotide sequence of the OXA-1 beta-lactamase gene. Proc Natl Acad Sci U S A. 84: 7378-82, 1987. 91. Pedersen K, Pedersen K, Jensen H, Finster K, Jensen VF, Heuer OE. Occurrence of antimicrobial resistance in bacteria from diagnostic samples from dogs. J Antimicrob Chemother. 60: 775-81, 2007. 92. Pellegrino FL, Casali N, Dos Santos KR, Nouér SA, Scheidegger EM, Riley LW, Moreira BM. Pseudomonas aeruginosa epidemic strain carrying blaSPM metallo-beta-lactamase detected in Rio de Janeiro, Brazil. J Chemother. 18: 151-156, 2006. 93. Petersen AD, Walker RD, Bowman MM, Schott HC 2nd, Rosser EJ Jr. Frequency of isolation and antimicrobial susceptibility patterns of Staphylococcus intermedius and Pseudomonas aeruginosa isolates from canine skin and ear samples over a 6-year period (1992-1997). J Am Anim Hosp Assoc. 38: 407-13, 2002. 94. Pirnay JP, Matthijs S, Colak H, Chablain P, Bilocq F, Van Eldere J, De Vos D, Zizi M, Triest L, Cornelis P. Global Pseudomonas aeruginosa biodiversity as reflected in a Belgian river. Environ Microbiol. 7: 969-80, 2005. 95. Pitout JD, Chow BL, Gregson DB, Laupland KB, Elsayed S, Church DL. Molecular epidemiology of metallo-beta-lactamase-producing Pseudomonas aeruginosa in the Calgary Health Region: emergence of VIM-2-producing isolates. J Clin Microbiol. 45: 294-8, 2007. 96. Poirel L, Lebessi E, Castro M, Fèvre C, Foustoukou M, Nordmann P. Nosocomial outbreak of extended-spectrum beta-lactamase SHV-5-producing isolates of Pseudomonas aeruginosa in Athens, Greece. Antimicrob Agents Chemother. 48: 2277-9, 2004. 97. Poirel L, Naas T, Guibert M, Chaibi EB, Labia R, Nordmann P. Molecular and biochemical characterization of VEB-1, a novel class A extended-spectrum beta-lactamase encoded by an Escherichia coli integron gene. Antimicrob Agents Chemother. 43: 573-81, 1999. 98. Poirel L, Magalhaes M, Lopes M, Nordmann P. Molecular analysis of metallo-beta-lactamase gene blaSPM-1-surrounding sequences from disseminated Pseudomonas aeruginosa isolates in Recife, Brazil. Antimicrob Agents Chemother. 48: 1406-9, 2004. 99. Pollack M, Young LS. rotective activity of antibodies to exotoxin A and lipopolysaccharide at the onset of Pseudomonas aeruginosa septicemia in man. Clin Invest. 63: 276-86, 1979. 100. Poole K, Srikumar R. Multidrug efflux in Pseudomonas aeruginosa: components, mechanisms and clinical significance. Curr Top Med Chem. 1: 59-71, 2001. 101. Putman M, van Veen HW, Konings WN. Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev. 64: 672-693, 2000. 102. Quale J, Bratu S, Gupta J, Landman D. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother. 50: 1633-1641, 2006. 103. Quinn PJ, Carter ME, Markey B, Carter GR. Pseudomonas species. In: Clinical veterinary microbiology. 1st ed. Wolfe, England PP. 237-242, 1994. 104. Römling U, Schmidt KD, Tümmler B. Large genome rearrangements discovered by the detailed analysis of 21 Pseudomonas aeruginosa clone C isolates found in environment and disease habitats. J Mol Biol. 271: 386-404, 1997. 105. Römling U, Wingender J, Müller H, Tümmler B. A major Pseudomonas aeruginosa clone common to patients and aquatic habitats. Appl Environ Microbiol. 60: 1734-8, 1994. 106. Rubin J, Walker RD, Blickenstaff K, Bodeis-Jones S, Zhao S. Antimicrobial resistance and genetic characterization of fluoroquinolone resistance of Pseudomonas aeruginosa isolated from canine infections. Vet Microbiol. 4: xxx-xxx, 2008 (In press). 107. Sader HS, Fritsche TR, Jones RN. Potency and spectrum trends for cefepime tested against 65746 clinical bacterial isolates collected in North American medical centers: results from the SENTRY Antimicrobial Surveillance Program (1998-2003). Diagn Microbiol Infect Dis. 52: 265-73, 2005. 108. Sanschagrin F, Couture F, Levesque RC. Primary structure of OXA-3 and phylogeny of oxacillin-hydrolyzing class D beta-lactamases. Antimicrob Agents Chemother. 39: 887-93, 1995. 109. Sekiguchi J, Asagi T, Miyoshi-Akiyama T, Fujino T, Kobayashi I, Morita K, Kikuchi Y, Kuratsuji T, Kirikae T. Multidrug-resistant Pseudomonas aeruginosa strain that caused an outbreak in a neurosurgery ward and its aac(6')-Iae gene cassette encoding a novel aminoglycoside acetyltransferase. Antimicrob Agents Chemother. 49: 3734-3742, 2005. 110. Senda K, Arakawa Y, Nakashima K, Ito H, Ichiyama S, Shimokata K, Kato N, Ohta M. Multifocal outbreaks of metallo-beta-lactamase-producing Pseudomonas aeruginosa resistant to broad- spectrum beta-lactams, including carbapenems. Antimicrob Agents Chemother. 40: 349-353, 1996. 111. Soong G, Parker D, Magargee M, Prince AS. The type III toxins of Pseudomonas aeruginosa disrupt epithelial barrier function. J Bacteriol. 190: 2814-21, 2008. 112. Spilker T, Coenye T, Vandamme P, LiPuma JJ. PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J Clin Microbiol. 42: 2074-9, 2004. 113. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature. 406: 959-64, 2000. 114. Strateva T, Ouzounova-Raykova V, Markova B et al. Problematic clinical isolates of Pseudomonas aeruginosa from the university hospitals in Sofia, Bulgaria: current status of antimicrobial resistance and prevailing resistance mechanisms. J Med Microbiol 56: 956-63, 2007. 115. Tenover FC, Arbeit RD, Goering RV et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33: 2233-9, 1995. 116. Tipper DJ, Strominger JL. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci U S A. 54: 1133-41, 1965. 117. Thomson KS, Sanders CC. Detection of extended-spectrum beta-lactamases in members of the family Enterobacteriaceae: comparison of the double-disk and three-dimensional tests. Antimicrob Agents Chemother. 36: 1877-82, 1992. 118. Toleman MA, Vinodh H, Sekar U, Kamat V, Walsh TR. blaVIM-2-harboring integrons isolated in India, Russia, and the United States arise from an ancestral class 1 integron predating the formation of the 3' conserved sequence. Antimicrob Agents Chemother. 51: 2636-8, 2007. 119. Tolar EL, Hendrix DV, Rohrbach BW, Plummer CE, Brooks DE, Gelatt KN. Evaluation of clinical characteristics and bacterial isolates in dogs with bacterial keratitis: 97 cases (1993-2003). J Am Vet Med Assoc. 228: 80-5, 2006. 120. Unal S, Garcia-Rodriguez JA. Activity of meropenem and comparators against Pseudomonas aeruginosa and Acinetobacter spp. isolated in the MYSTIC Program, 2002-2004. Diagn Microbiol Infect Dis. 53: 265-71, 2005. 121. Vahaboglu H, Ozturk R, Akbal H et al. Practical approach for detection and identification of OXA-10-derived ceftazidime-hydrolyzing extended-spectrum beta-lactamases. J Clin Microbiol 36: 827-9, 1998. 122. Vahaboglu H, Oztürk R, Aygün G, Coşkunkan F, Yaman A, Kaygusuz A, Leblebicioglu H, Balik I, Aydin K, Otkun M. Widespread detection of PER-1-type extended-spectrum beta-lactamases among nosocomial Acinetobacter and Pseudomonas aeruginosa isolates in Turkey: a nationwide multicenter study. Antimicrob Agents Chemother. 41: 2265-9, 1997. 123. Venkatesan A, Spalding C, Speedie A, Sinha G, Rumbaugh JA. Pseudomonas aeruginosa infective endocarditis presenting as bacterial meningitis. J Infect. 51: 199-202, 2005. 124. Walker SE, Sander JE, Cline JL, Helton JS. Characterization of Pseudomonas aeruginosa isolates associated with mortality in broiler chicks. Avian Dis. 46: 1045-50, 2002. 125. Walther-Rasmussen J, Høiby N. OXA-type carbapenemases. J Antimicrob Chemother. 57: 373-83, 2006. 126. Wang C, Cai P, Chang D et al. A Pseudomonas aeruginosa isolate producing the GES-5 extended-spectrum beta-lactamase. J Antimicrob Chemother 57: 1261-2, 2006. 127. Wang CY, Jerng JS, Chen KY et al. Pandrug-resistant Pseudomonas aeruginosa among hospitalised patients: clinical features, risk-factors and outcomes. Clin Microbiol Infect 12: 63-8, 2006. 128. Watson PJ, Jiru X, Watabe M, Moore JE. Purulent rhinitis and otitis caused by Pseudomonas aeruginosa in sheep showered with contaminated 'shower wash'. Vet Rec. 153: 704-707, 2003. 129. Weile J, Rahmig H, Gfröer S, Schroeppel K, Knabbe C, Susa M. First detection of a VIM-1 metallo-beta-lactamase in a carbapenem-resistant Citrobacter freundii clinical isolate in an acute hospital in Germany. Scand J Infect Dis. 39: 264-6, 2007. 130. Weldhagen GF, Poirel L, Nordmann P. Ambler class A extended-spectrum beta-lactamases in Pseudomonas aeruginosa: noveldevelopments and clinical impact. Antimicrob Agents Chemother. 47: 2385-92, 2003. 131. Yan JJ, Hsueh PR, Lu JJ, Chang FY, Ko WC, Wu JJ. Characterization of acquired beta-lactamases and their genetic support in multidrug-resistant Pseudomonas aeruginosa isolates in Taiwan: the prevalence of unusual integrons. J Antimicrob Chemother. 58: 530-6, 2006. 132. Yan JJ, Tsai SH, Chuang CL, Wu JJ. OXA-type beta-lactamases among extended-spectrum cephalosporin-resistant Pseudomonas aeruginosa isolates in a university hospital in southern Taiwan. J Microbiol Immunol Infect. 39: 130-4, 2006. 133. Ziha-Zarifi I, Llanes C, Kohler T, Pechere JC, Plesiat P. In vivo emergence of multidrug-resistant mutants of Pseudomonas aeruginosa overexpressing the active efflux system MexA-MexB-OprM. Antimicrob Agents Chemother. 43: 287-291, 1999. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40572 | - |
| dc.description.abstract | 本實驗的目的為比較人類病患、伴侶動物與經濟動物所分離之綠膿桿菌在抗生素敏感性及數種抗藥性基因型的表現。試驗期間,由人類病患分得94株、家犬分得29株以及雞中止蛋分得97株,共220株綠膿桿菌;經確認之菌株分別進行抗生素敏感性試驗、脈衝式電泳及利用聚合酶鏈鎖反應偵測Ambler class A(blaTEM、blaSHV、blaGES、blaVEB、blaPER、blaPSE)與Ambler class D(blaOXA-2 like、blaOXA-10 like)之乙內醯胺酶。
抗生素敏感性試驗結果顯示,所選用之盤尼西林類、頭孢子素類、胺基醣苷類與氟奎諾酮類抗菌劑中,人類病患分離株之抗藥性皆最嚴重,家犬次之,中止蛋最低;對所偵測的抗藥性基因而言,TEM-1在人類、家犬、雞蛋分離株之陽性率分別為90.4%、69.0%與71.1%,PSE-1之陽性率分別77.7%、75.9%與6.2%,OXA-10 like之陽性率則為98.9%、86.2%與18.6%,而乙內醯胺酶SHV、GES、VEB、PER及OXA-2 like皆未在本實驗中被偵測出。經定序後,發現OXA-17及OXA-10兩者為人類與家犬菌株最常及次之常見之OXA酵素;然而,中止蛋分離株所攜帶之OXA-10之陽性率則與OXA-17相近。以65%基因同源性為分類基礎,脈衝式電泳圖譜可將所有收集菌株分成20個clusters,雖然部份之人類與中止蛋分離株似乎有集中在幾個特定clusters之趨勢,但基於綠膿桿菌基因之多變異性,大部分菌株仍分散在不同之clusters。 綜合實驗結果,發現TEM-1、PSE-1與OXA類乙內醯胺酶均廣泛存在於所收集之綠膿桿菌中,人類分離菌株不論在選定藥物之抗藥性或乙內醯胺酶抗藥性基因之陽性率皆高於動物來源之菌株;基於動物與人類因使用不同種類抗菌劑,而對於綠膿桿菌產生不同篩選性壓力的事實,因此,未來擬由探討常用抗菌劑的使用對誘導綠膿桿菌產生抗藥性之關連性,或抗藥性綠膿桿菌在人類與動物之間傳播的可能模式作為進一步研究的方向。 | zh_TW |
| dc.description.abstract | The aims of the study were to survey and differentiate the phenotype and genotype of Pseudomonas aeruginosa from human, companion and economic animal isolates. A total of ninety four human isolates, twenty nine canines isolates and ninety seven chicken isolates used polymerase chain reaction (PCR) to detect the encoding genes of class A (blaTEM, blaSHV, blaGES, blaVEB, blaPER and blaPSE) and class D (blaOXA-2 like, and blaOXA-10 like) β-lactamases. All isolates were also performed antimicrobial susceptibility testing and pulsed-fielded gel electrophoresis (PFGE).
Antimicrobial resistance of human isolates were higher than canine isolates, followed by chicken isolates. blaTEM, blaSHV, blaGES, blaVEB, blaPER ,and blaOXA-2 like were not harboured in any isolates. In human, canine and chicken isolates, blaTEM-1 (90.4%, 69.0% and 71.1%), blaPSE-1 (77.7%, 75.9% and 6.2%) and blaOXA-10 like (98.9%, 86.2% and 18.6%) were detected, respectively. OXA-17 was the most common OXA enzyme in human and canine isolates, followed by OXA-10. However, the results of the prevalence of OXA-10 and OXA-17 in chicken isolates were similar (9.3% and 8.2%). All isolates were grouped into twenty clusters by PFGE. Although some isolates from humans or chickens tended to be gathered in specific clusters, other isolates from three sources were mixed together and the result indicated that genetypes of P. aeruginosa are divergent. TEM-1, PSE-1 and OXA-type β-lactamases were widely distributed in Taiwan. The usage of antimicrobial agents and antimicrobial selective pressure might cause great impact on the results. Further surveillance and monitoring the route of resistant genes transmission between P. aeruginosa from difference species and the correlation between antimicrobials and resistant bacteria will be necessary. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:51:48Z (GMT). No. of bitstreams: 1 ntu-97-R95629039-1.pdf: 815298 bytes, checksum: dc2d05ce13acb9f35c22656e2532802f (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 中文摘要 III 英文摘要 IV 第一章 緒言 1 第二章 文獻探討 3 第一節 綠膿桿菌(Pseudomonas aeruginonsa) 3 1.1綠膿桿菌之型態學與生化特性 3 1.2綠膿桿菌之毒力因子與病原性 4 第二節 綠膿桿菌之抗藥性機制 7 2.0總論 7 2.1盤尼西林類抗菌劑 7 2.2頭孢子素類抗菌劑 8 2.3多黏菌素 8 2.4胺基醣苷類抗菌劑 9 2.5氟奎諾酮類抗菌劑 9 2.6綠膿桿菌之抗藥性機制 9 2.6.1酶的修飾或破壞抗菌劑 10 2.6.2改變或更替抗菌劑作用標的 10 2.6.3改變細胞膜之通透性 10 2.6.4主動排出幫浦 11 第三節 乙內醯胺酶 13 3.1乙內醯胺酶之分類法 13 3.1.1 Ambler分類法 13 3.1.2 Bush分類法 13 3.2綠膿桿菌之乙內醯胺酶 15 3.3乙內醯胺酶之鑑定 17 第四節 全球具抗藥性綠膿桿菌之分佈趨勢 20 第三章 材料與方法 23 第一節 實驗材料 23 1.1培養基與試劑 23 1.1.1培養基 23 1.1.2試劑 23 1.1.3抗菌劑與其它藥品 23 1.1.4 DNA模版萃取用之藥品與相關溶液配製 23 1.1.5聚合酶鏈鎖反應及電泳之藥品與相關溶液 24 1.1.6脈衝式電泳之藥品與相關溶液配製 24 1.2器具 25 1.3儀器設備 25 第二節 實驗方法 26 2.1菌株之收集與鑑定 26 2.2抗生素敏感性試驗 26 2.3綠膿桿菌DNA模版之萃取 27 2.4聚合酶鏈鎖反應 28 2.4.1綠膿桿菌之鑑定 28 2.4.2菌株抗藥性基因之偵測 29 2.5脈衝式電泳試驗 29 2.5.1製備plug 29 2.5.2脈衝式電泳 30 第三節 統計與分析 31 第四章 結果 32 第一節 菌株收集 32 第二節 抗生素敏感性試驗結果 33 第三節 乙內醯胺酶基因之偵側結果 35 第四節 脈衝式電泳之分子分型 37 第五章 討論 39 第一節 綠膿桿菌之抗藥性比較 39 第二節 台灣綠膿桿菌分離株所攜乙內醯胺酶之分佈 43 第三節 綠膿桿菌之分子流行病學 47 第六章 總結 49 參考文獻 64 圖一 人類來源分離株與標準菌株(ATCC 27853)之親緣性分析 60 圖二 家犬來源分離株與標準菌株(ATCC 27853)之親緣性分析 61 圖三 雞中止蛋分離株與標準菌株(ATCC 27853)之親緣性分析 62 圖四 220株綠膿桿菌分離株與標準菌株(ATCC 27853)之親緣性分析與分組圖 63 表一 綠膿桿菌對各抗菌劑之臨界點數值 51 表二 聚合酶鏈鎖反應使用之引子對、黏合反應溫度與產物長度 52 表三 人類綠膿桿菌分離株之抗生素敏感性試驗結果 53 表四 家犬綠膿桿菌分離株之抗生素敏感性試驗結果 54 表五 雞中止蛋綠膿桿菌分離株之抗生素敏感性試驗結果 55 表六 三種來源菌株對不同抗菌劑敏感性之比較 56 表七 綠膿桿菌乙內醯胺酶的鑑定及分佈表 57 表八 脈衝式電泳分析:三種來源分離株之親緣性分佈對照表 58 表九 本試驗與它國分離株對不同抗菌劑敏感性百分率之比較表 59 | |
| dc.language.iso | zh-TW | |
| dc.subject | 家禽 | zh_TW |
| dc.subject | 抗生素敏感性試驗 | zh_TW |
| dc.subject | 綠膿桿菌 | zh_TW |
| dc.subject | 家犬 | zh_TW |
| dc.subject | 脈衝式電泳 | zh_TW |
| dc.subject | avian | en |
| dc.subject | P. aeruginosa | en |
| dc.subject | antimicrobial susceptibility testing | en |
| dc.subject | PFGE | en |
| dc.subject | TEM | en |
| dc.subject | OXA | en |
| dc.subject | canine | en |
| dc.title | 台灣北區人類、家犬與雞中止蛋之綠膿桿菌抗藥性調查 | zh_TW |
| dc.title | Antimicrobial Resistance of Pseudomonas aeruginosa of Humans, Canines and Death of Chicken Embryos in Northern Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡向榮,周崇熙,賴信志 | |
| dc.subject.keyword | 綠膿桿菌,抗生素敏感性試驗,脈衝式電泳,家犬,家禽, | zh_TW |
| dc.subject.keyword | P. aeruginosa,antimicrobial susceptibility testing,PFGE,TEM,OXA,canine,avian, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-31 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| Appears in Collections: | 獸醫學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-97-1.pdf Restricted Access | 796.19 kB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
