Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40571
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor龔源成(Yuancheng Gung)
dc.contributor.authorYa-Ting Hsuen
dc.contributor.author許雅婷zh_TW
dc.date.accessioned2021-06-14T16:51:46Z-
dc.date.available2008-08-05
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-31
dc.identifier.citationAki K., Richards P.G., 1980. Quantitative Seismology: theory and methods, W. H. Freeman, New York.
Bijwaard H., Spakman W., Engdahl E.R., 1998. Closing the gap between regional and global travel time tomography, J. Geophys. Res., 103: 30,055-30,078.
Boschi L., Dziewonski A.M., 2000. Whole earth tomography from delay times of P, PcP, and PKP phasese: lateral heterogeneities in the outer core or radial anisotropy in the mantle? J. Geophys. Res., 105: 13,675-13,696.
Chiao L.-Y., Kuo B.-Y., 2001. Multiscale seismic tomograohy, Geophys. J. Int., 145: 517-527.
Chiao L.-Y., Lin J.-R., Gung Y.-C., 2006. Crustal magnetization equivalent source model of Mars constructed from a hierarchical multiresolution inversion of the MGS data, J. Geophys. Res., (in press), doi:10.1029/2006JE002725.
Chiao L.-Y., Liang W.-T., 2003. Multiresolution parameterization for geophysical inversion problems, Geophysics., 68: 199-209.
Dahlen F.A., Hung S.-H., Nolet G..,2000. Fréchet kernels for finite-frequency travel times―I. Theory, Geophys. J. Int., 141: 157-174.
Dziewonski A.M., 1984. Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6, J. Geophys. Res., 89: 5929-5952.
Dziewonski A.M., Anderson D.L., 1981. Preliminary reference Earth model, Phys. Earth planet. Inter., 25: 297-356.
Edmonds A.R., 1960. Angular momentum in quantum mechanics. Princeton University Press, Princeton, New Jersey.
Ekström G., Dziewonski A. M., 1998. The unique anisotropy of the Pacific upper mantle, Nature, 394: 168-172.
Gilbert F., 1971. Excitation of the normal modes of the Earth by earthquake sources, Geophys. J. R. Astr. Soc., 22: 223-226.
Grand S.P., 2002. Mantle shear wave tomography and the fate of subducted slabs, Phil. Trans. R. Soc. London., 360: 2475-2491.
Gu Y.J., Dziewonski A.M., Su W.J., Ekström G., 2001. Models of the mantle shear velocity and discontinuities in the pattern of lateral heterogeneities., J. Geophys. Res., 106: 11169-11199.
Gung Y., Panning M., Romanowicz B., 2003. Global anisotropy and the thickness of continents, Nature, 422: 707-711.
Gung Y., Romanowicz B.,2004. Q tomography of the upper mantle using three-component long-period waveforms, Geophys. J. Int., 157: 813-830.
Hung S.-H., Dahlen F.A., Nolet G., 2000. Fréchet kernels for finite-frequency travel times―II. Examples, Geophys. J. Int., 141: 175-203.
Jordan T.H., 1978. A procedure for estimating lateral variations from low-frequency eigenspectra data, Geophys. J. R. Astr. Soc., 52: 441-455.
Karason H., van der Hilst R.D., 2001. Improving global tomography models of P-wavespeed I: incorporation of differential travel times for refracted and diffracted core phases (PKP, Pdiff), J. Geophys. Res., 106: 6,569-6,587.
Lines L.R., Treitel S., 1983. Tutorial: A review of least-squares inversion and its application to geophysical problems, Geophys. Prosp., 32: 159-186.
Li X.D.,Tanimoto T., 1993. Waveforms of long period body waves in a slightly aspherical Earth, Geophys. J. Int., 112: 92-112.
Li X.D., Romanowicz B., 1995. Comparison of global waveform inversions with and without considering cross branch coupling, Geophys. J. Int., 121: 695-709.
Li X.D., Romanowicz B., 1996. Global mantle shear velocity model developed using nonlinear asymptotic coupling theory, J. Geophys. Res., 101: 22,245-73.
Liu X.F., Dziewonski A.M.,1998. Globak analysis of shear wave velocity amomalies in the lowermost mantle, in Core-Mantle Boundary Region, ed. M. Gurnis, N. Wysession, E. Knittle, B. Buffett, 28: 21-36. Washington, DC: Am. Geophys. Union.
Marone F., Gung Y., Romanowicz B., 2007 Three-dimensional radial anisotropics tructure of the North American upper mantle from inversion of surface waveform data, Geophys. J. Int., 171: 206-222.
Masters G., Laske G., Bolton H., Dziewonski A.M., 2000. The relative behavior of shear velocity ,bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure, In Earth’s Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale, ed. S Karato, AM Forte, RC Liebermann, G Masters, L Stixrude, 117: 63-87. Washinton, DC: Am. Geophys. Union.
Mégnin C., Romanowicz B., 1999. The effects of theoretical formalism and data selection scheme on mantle models derived from waveform tomography, Geophys. J. Int., 138:366-380.
Mégnin C., Romanowicz B., 2000. The 3D shear velocity structure of the mantle from the inversion of body, surface and higher mode waveforms, Geophys. J. Int., 143: 709-728.
Menke W., 1984. Geophysical data analysis. Discrete inversion theory: Academic Press.
Meyerholtz K.A., Pavlis G.L., Szpakowski S.A., 1989. Convolutional quelling in seismic tomography, Geophysics., 54: 570-580.
Mooney W.D., Laske G.., Masters G.., 1998. CRUST 5.1: A global crustal model at , J. Geophys. Res., 103: 727-747.
Montagner J.P., Tanimoto T., 1991. Global upper mantle tomography of seismic velocities and anisotropy, J. Geophys. Res., 96: 20,337-20,351.
Obayashi M., Fukao Y., 1997. P and PcP ttravel time tomography for the core-mantle boundary, J. Geophys. Res., 102: 17,825-17,841.
Paige C.C., Saunders M.A., 1982. LSQR: an algorithm for sparse linear equations and sparse least squares, Trans. Mart. Software., 8: 43-71.
Panning M., Romanowicz B., 2006. A three-dimensional radially anisotropy model of shear velocity in the mantle, Geophys. J. Int., 167: 361-379.
Park J., 1987. Asymptotic coupled mode expressions for multiplet amplitude anomalies and frequency shifts on an aspherical Earth, Geophys. J. R. Astr. Soc., 90: 129-169.
Ritsema J., van Heijst H.H., Woodhouse J.H., 1999. Complex shear wave velocity structure imaged beneath Africa and Iceland, Science, 286: 1925-1928.
Romanowicz B., 1987a. Multiplet-multiplet coupling due to lateral heterogeneity: asymptotic effects on the amplitude and frequency of Earth normal modes, Geophys. J. R. Astr. Soc., 90: 75-100.
Romanowicz B., Roult G., Kohl T., 1987b. The upper mantle degree two pattern: con-
straints from GEOSCOPE fundamental spheroidal mode eigenfrequency and attenuation measurements, Geophys. Res. Lett., 14: 1219-1222.
Romanowicz B., 2003. Global mantle tomography: progress status in the past ten years, Annu. Rev. Earth Planet. Sci., 31: 303-328.
Romanowicz B., Panning M., Gung Y., Capdeville Y., 2008. On the computation of long period seismograms in a 3D earth using normal mode based approximations, Geophys. J. Int. in revision.
Schröder P., Sweldens W., 1995. Spherical Wavelets: Efficiently representing functions on the sphere, SIGGRAPH: Computer Graphics, Proc. Ann. Conf. Ser., 161-172.
Sweldens W., 1995. The Lifting Scheme: A Construction of Second Generation Wavelets, Tech. Rept, Ind. Maths Initiative, Dept Mathematics, University of South Carolina, Columbia.
Tanimoto T., 1984. A simple derivation of the formula to calculate synthetic long-period seis-mograms in a heterogeneous earth by normal mode summation, Geophys. J. R. Astr. Soc., 77: 275-278.
Trampert J., Snieder R., 1996. Model estimations biased by truncated expansions: possible artifacts in seismic tomography, Science., 271: 1257-1260.
Wang Z., Dahlen F.A., 1995. Spherical-spline parametrization of three-dimensional Earth models, Geophys. Res. Lett., 22: 3099-3102.
Woodhouse J.H., 1980. The coupling and attenuation of nearly resonnant multiplets in the earth free oscillation spectrum, Geophys. J. R. Astr. Soc., 61: 261-283.
Woodhouse J.H., 1983. The joint inversion of seismic waveforms for lateral variations in Earth structure and earthquake source parameters, (eds. Kanamori, H. and Boschi, E.) Proc. Enrio Fermi Int. Sch. Phys., LXXXV: 366-397.
Woodhouse J.H., Dziewonski A.M., 1984. Mapping the upper mantle: three-dimensional modeling of Earth structure by inversion of seismic waveforms, J. Geophys. Res., 89: 5953-5986.
Woodhouse J.H, Girnius T.P., 1982. Surface waves and free oscillations in a regionalized earth model, Geophys. J. R. Astr. Soc., 68: 653-673.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40571-
dc.description.abstract受限於地震大多發生在特定位置及測站幾乎處於大陸區塊,波線資料分佈不甚均勻,為此,模型的參數化方式很有可能是影響速度構造反演結果的原因之一。本研究的震波波形反演 (waveform tomography) 以兩階段的參數化轉換,結合多重尺度 (multi-scale) 的逆推解析,讓區域性的解析尺度端其資料密度自然決定,以解決上述震波資料不均衍生的種種問題。首先,在正演計算 (forward computation) 的部分採用以normal mode理論為基礎的非線性漸進耦合理論 (non-linear asymptotic coupling theory, NACT),此階段,我們以球諧函數 (spherical harmonics) 為模型基底,球諧函數在大圓路徑上可分解成數組正弦 (sine) 與餘弦 (cosine) 函數,提供高效率與精確的路徑積分解析解。但是隨著預設解析尺度越精細 (即求解到越高階),以球諧函數為基底的模型參數量將正比於 ,反演的運算效率因此大為減弱。在不降低解析尺度的前提下,參數化的第二階段,我們將球諧函數展開後的敏感度算核 (sensitivity kernel) 轉化到局部節點 (node) 上,轉換後的區域性基底僅有10-15%的節點具有有效感應 (effective sensitivity),大大減少反演所需的參數量。藉由兩階段的模型參數化,我們得以在保有不同階段參數化基底的條件下,於逆推反演時持有模型的靈活度,透過此轉化後的區域性偏導數矩陣,求得以節點為基底的單一尺度解析亦或以球面小波為基底的多重尺度解析。本研究方法將首次應用於太平洋上部地函,環太平洋地震帶及其周圍測站提供的充足跨洋傳波路徑,使得本區實為表面波研究的不二選區。比較單一尺度模型與多重尺度模型可以發現,其皆可再進一步改善對大尺度構造已有一定解析能力的初始三維全球模型 (SAW642AN) 額外近25%的擬合程度。另一方面,兩種模型解相似度極高,可能原因有:(1)配合NACT使用的資料權重配予會適度平緩資料密度不勻的問題,無法發揮多重尺度解析固有的優勢。(2)以NACT求得的敏感度算核為一在側向無寬度的二維運算核,但在有限的球諧函數參數化下,其於側向將擁有一定寬度,致使模型側向較平滑。往後我們將納入非均向性 (anisotropy) 的考量與更完善的地殼修正,並簡化過於人為操造的權重配給,在多重尺度有限參數化的逆推方式下,因應資料本身於空間中帶有的有效訊息,對速度構造提供更具體的解釋。zh_TW
dc.description.abstractOwing to the abundant circum-Pacific earthquakes and seismic stations, the coverage density of trans-Pacific minor-arc surface waves is highest among the globe, making the region an excellent candidate for the high resolution surface waves tomography. We invert long period waveform of Rayleigh waves in the time domain in the framework of normal-mode-based asymptotic coupling theory [Li and Romanowicz, 1995] for the upper mantle structure underneath the Pacific. In particular, we propose a two-step lateral model parameterization approach, by which both the accuracy in the forward computation and the flexibility in the inversion stage are achieved. In the first step, the initial model is parameterized in terms of spherical harmonics. Spherical harmonics can be simplified to cosine and sine functions in the great circle path connecting the source and receiver, allowing an efficient and accurate analytical solution for the path integral and therefore forward synthetics. In the second step, partial derivative matrices w.r.t. spherical harmonics are mapped onto nodes of the spherical triangle meshes within the selected region. Taking advantage of the orthogonality of spherical harmonics, the above conversion is straightforward. After the mapping, only about 10-15% of nodes receive effective sensitivities. As a result, the computation cost in the stage of inversion is significantly reduced. With the new matrices, we may utilize either the grid-based fixed-scale or the wavelet-based multi-scale inversion technique [eg. Chiao and Kuo, 2001] for the regional tomography. The new approach allows us to obtain partial derivative matrices from three different model basis for the same data set, and only one forward computation is required. We present the tomographic results, compare models derived from different model parameterizations, and discuss how the tomographic features are influenced by model parameterizations.en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:51:46Z (GMT). No. of bitstreams: 1
ntu-97-R95224207-1.pdf: 8168135 bytes, checksum: 4dc01aeb7faab88d60515306a49a6e00 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents目 錄
口試委員會審定書……………………………………………...……….....……………I
中文摘要……………………………………………………………………………...…II
英文摘要…………………………………………………………………………….....IV
目錄………………………………………………………………………………….....VI
圖目錄……………………………………………………………………...……...…VIII
第一章 序論 1
1.1 文獻回顧………...………………………………………………………...…1
1.2 研究動機與目的…….……………………………………………………….3
第二章 研究方法 6
2.1模型參數化 (model parameterization).………………………………………..6
2.2 敏感度算核 (sensitivity kernel) 轉換…………………..................................9
2.3逆推反演理論 (inversion theory)…………………………………………….10
2.3.1 傳統正則化 (regularization)…………………………………………….11
 2.3.2 多重尺度有限參數法 (mulit-scale parametization)……………………13
第三章 資料選取與模型有限參數化 18
  3.1資料選取………………………………………………………………………18
3.2權重評估計策 (weighting scheme)………………………………………….22
3.3模型有限參數化………………………………………………………………22
第四章 討論 26
4.1最適模型解………………………………………………………....................26
4.2結果………………………………………………………………....................27
 4.2.1節點參數法結果………..………………………………...........................28
4.2.2多重尺度有限參數法結果……………………………………………….30
4.3人為速度異常模型解析能力測試……………………………………………34
4.4結論……………………………………………………………………………37
附錄A 39
A.1自由震盪疊加運算式 (normal mode summation)…………………………39
A.2一階擾動理論 (first-order perturbation theory)……………..........................42
A.3非線性漸進偶合理論 (non-linear asymptotic coupling theory)…………….44
A.4 ………………………………………………………………………...………49
A.5 ………………………………………………………………………………...50
附錄B 52
參考文獻 55






圖目錄
圖1-1. 1995-2004年,Mw>5.5,IRIS與Fnet資料庫全球地震事件與測站分布圖。…05
圖2.1. 多重尺度有限參數法二維球面模型範例示意圖。[改繪自Chiao and Liang, 2003]…………………………………………………………………………..16
圖2-2. 離散序列 多重尺度拆解、重建示意圖。…………………………………….16
圖3-1. 長週期表面波持續繞地球傳波波徑示意圖。………………………………19
圖3-2. 以Niigata (新瀉) 地震為例,垂直分量表面波震波訊號截取圖。…………20
圖3-3. 全球表面波線覆蓋密度分佈與震源、測站地理位置分佈圖。………………21
圖3-4. 太平洋地區表面波線覆蓋密度分佈與震源、測站位置分佈圖。……………21
圖3-5. 以球面正二十面體為基本架構的球面三角網格示意圖。[摘自Chiao and Kuo, 2001]…………………………………………………………………………..23
圖3-6. 基底函數以7組cubic b-splines的形式呈現,為震波速度反演時所需的徑向參數化模型。………………………………………………………………….25
圖3-7. 太平洋地區八個基底球面三角形劃分至第五階,共1071個節點。………...25
圖4-1. 擬合程度與模型變異數消長曲線圖。………………………………………..27
圖4-2. SAW642AN_iso三維地球模型。[改繪自Panning and Romanowicz, 2006]….29
圖4-3. 節點參數法之速度異常圖。…………………………………………………..29
圖4-4. 節點參數法之速度擾動圖。…………………………………………………..30
圖4-5. 多重尺度有限參數法之速度異常圖。………………………………………..31
圖4-6. 多重尺度有限參數法之速度擾動圖。………………………………………..31
圖4-7. 多重尺度有限參數法之速度擾動模型各尺度分解圖。…………………..…33
圖4-8. 模型解析能力測試圖。………………………………………………………..36
圖A-1. 球座標系統。…………………………………………………………………41
圖A-2. 利用PAVA與NACT所預期求得不同波相的敏感度算核,由上而下依序為G (洛夫波的fundamental mode波相)、SS、Sdif。[摘自Li and Romanowicz, 1995]…………………………………………………………………………..49
圖A-3. 指標冗餘因子 的二維幾何示意圖。………………………………………54
dc.language.isozh-TW
dc.subject非線性漸進耦合理論zh_TW
dc.subject波形震波層析成像zh_TW
dc.subject太平洋上部地函zh_TW
dc.subject多重尺度有限參數法zh_TW
dc.subject球諧函數zh_TW
dc.subjectmulti-scale parameterizationen
dc.subjectNACTen
dc.subjectspherical harmonicsen
dc.subjectwaveform tomographyen
dc.subjectthe Pacific upper mantleen
dc.title太平洋地區上部地函多重尺度之表面波層析成像zh_TW
dc.titleMulti-scale Waveform Tomography of the Pacific Upper Mantle Using Surface Wave Dataen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee洪淑蕙(Shu-Huei Hung),喬凌雲(Ling-Yun Chiao),郭本垣(Ban-Yuan Kuo),梁文宗(Wen-Tzong Liang)
dc.subject.keyword波形震波層析成像,太平洋上部地函,多重尺度有限參數法,球諧函數,非線性漸進耦合理論,zh_TW
dc.subject.keywordwaveform tomography,the Pacific upper mantle,multi-scale parameterization,spherical harmonics,NACT,en
dc.relation.page59
dc.rights.note有償授權
dc.date.accepted2008-07-31
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
7.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved