請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40554
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 湯森林(Sen-Lin Tang) | |
dc.contributor.author | Cheng-Yu Yang | en |
dc.contributor.author | 楊承諭 | zh_TW |
dc.date.accessioned | 2021-06-14T16:51:09Z | - |
dc.date.available | 2014-08-18 | |
dc.date.copyright | 2011-08-18 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-12 | |
dc.identifier.citation | 參考文獻:
方士碩,2011,黑皮海綿(Terpios hoshinota)的生長與繁生。國立中山大學海洋生物研究所碩士論文,中華民國。 陳昭倫、孟培傑、湯森林、陳文明、宋克義、盧重光、李宏仁、王志騰、段文宏,2008,「綠島海域污染監測及防治與珊瑚礁群聚結構調查」成果報告。中央研究院生物多樣性中心,中華民國。 Baldauf, S.L. (2000). A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290, 972-977. Bolse, L.H., Gonzalez-Garcia, M., Postema, C.E., Ding, L., Lindsten, T., Turka, L.A., Mao, X., Nunez, G., and Thompson, C.B. (1993). Bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74, 597-609. Bond, C., and Harris, A.K. (1988). Locomotion of sponges and its physical mechanism. Journal of Experimental Biology 246, 271-285. Bryan, P.G. (1973). Growth rate, toxicity and distribution of the encrusting sponge Terpios sp. (Hadromerida: Suberitidae) in Guam, Mariana Islands. Micronesica 9, 237-243. Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., Turnbaugh, P.J., Fierer, N., and Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences 108, 4516-4522. Carter, H.J. (1873). On two new species of gummineae, with special and general observations. Annals and Magazine of Natural History 4, 17-30. Castro, P., and Huber, M.E. (2008). Marine animals without a backbone. In Marine Biology (McGraw-Hill), pp. 115-150. Chalfant, C.E. (2005). Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. Journal of Cell Science 118, 4605-4612. Cook, H.W., and Mcmaster, C.R. (2002). Fatty acid desaturation and chain elongation in eukaryotes. In Biochemistry of Lipids, Lipoproteins and Membranes, D.E. Vance, and J.E. Vance, eds. (Elsevier B.V.), pp. 181-205. Diaz, M.C. (1996). Molecular and ecological studies of sponge-microbial associations. University of California Ph.D. Diaz, M.C., Thacker, R.W., Rutzler, K., and Piantoni, C. (2007). Two new haplosclerid sponges from Caribbean Panama with symbiotic filamentous cyanobacteria, and an overview of sponge-cyanobacteria associations. In Porifera Research: Biodiversity, Innovation and Sustainability [Serie Livros 28], M.R. Custodio, G. Lobo-Hajdu, E. Hajdu, and G. Muricy, eds. (Museu Nacional), pp. 31-39. Ebihara, M., Makimura, K., Sato, K., Abe, S., and Tsuboi, R. (2009). Molecular detection of dermatophytes and nondermatophytes in onychomycosis by nested polymerase chain reaction based on 28S ribosomal RNA gene sequences. British Journal of Dermatology 161, 1038-1044. Erwin, P.M., and Thacker, R.W. (2007). Incidence and identity of photosynthetic symbionts in Caribbean coral reef sponge assemblages. Journal of the Marine Biological Association of the United Kingdom 87, 1683-1692. Ewing, B., and Green, P. (1998). Base-calling of automated sequencer traces using phred. II. error probabilities. Genome Research 8, 186-194. Ewing, B., Hillier, L., Wendl, M.C., and Green, P. (1998). Base-calling of automated sequencer traces using phred. I. accuracy assessment. Genome Research 8, 175-185. Friedrich, A.B., Fischer, I., Proksch, P., Hacker, J., and Hentschel, U. (2001). Temporal variation of the microbial community associated with the mediterranean sponge Aplysina aerophoba. Fems Microbiology Ecology 38, 105-113. Fujii, T., Keshavmurthy, S., Zhou, W., Hirose, E., Chen, C.A., and Reimer, J.D. (2011). Coral-killing cyanobacteriosponge (Terpios hoshinota) on the Great Barrier Reef. Coral Reefs 30, 483. He, S., Wurtzel, O., Singh, K., Froula, J.L., Yilmaz, S., Tringe, S.G., Wang, Z., Chen, F., Lindquist, E.A., Sorek, R., and Hugenholtz, P. (2010). Validation of two ribosomal RNA removal methods for microbial metatranscriptomics. Nature Methods 7, 807-812. Hirose, E., and Murakami, A. (2011). Microscopic anatomy and pigment characterization of coral-encrusting black sponge with cyanobacterial symbiont, Terpios hoshinota. Zoological Science 28, 199-205. Janion, C. (2008). Inducible SOS response system of DNA repair and mutagenesis in Escherichia coli. International Journal of Biological Sciences 4, 338-344. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., and Hattori, M. (2004). The KEGG resource for deciphering the genome. Nucleic Acids Research 32, D227-D231. Lawen, A. (2003). Apoptosis—an introduction. BioEssays 25, 888-896. Lee, Y.K., Lee, J.-H., and Lee, H.K. (2001). Microbial symbiosis in marine sponges. Journal of Microbiology 39, 254-265. Liao, M.-H., Tang, S.-L., Hsu, C.-M., Wen, K.-C., Wu, H., Chen, W.-M., Wang, J.-T., Meng, P.-J., Twan, W.-H., Lu, C.-K., Dai, C.-F., Soong, K., and Chen, C.A. (2007). The “black disease” of reef-building corals at Green Island, Taiwan - outbreak of a cyanobacteriosponge, Terpios hoshinota (Suberitidae; Hadromerida). Zoological Studies 46, 520. Marande, W., Lopez-Garcia, P., and Moreira, D. (2009). Eukaryotic diversity and phylogeny using small- and large-subunit ribosomal RNA genes from environmental samples. Environmental Microbiology 11, 3179-3188. Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A.C., and Kanehisa, M. (2007). KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Research 35, W182-W185. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., and Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5, 621-628. Munchhoff, J., Hirose, E., Maruyama, T., Sunairi, M., Burns, B.P., and Neilan, B.A. (2007). Host specificity and phylogeography of the prochlorophyte Prochloron sp., an obligate symbiont in didemnid ascidians. Environmental Microbiology 9, 890-899. Nelson, D.L., and Cox, M.M. (2005). Lehninger, principles of biochemistry, 4 edn (W. H. Freeman). Peterson, K.J., and Davidson, E.H. (2000). Regulatory evolution and the origin of the bilaterians. Proceedings of the National Academy of Sciences 97, 4430-4434. Plucer-Rosario, G. (1987). The effect of substratum on the growth of Terpios, an encrusting sponge which kills corals. Coral Reefs 5, 197-200. Pollard, T.D., and Borisy, G.G. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453-466. Putnam, C.D., Jaehnig, E.J., and Kolodner, R.D. (2009). Perspectives on the DNA damage and replication checkpoint responses in Saccharomyces cerevisiae. DNA Repair 8, 974-982. Rutzler, K. (1990). Associations between Caribbean sponges and photosynthetic organisms. In New Perspective in Sponge Biology, K. Rutzler, ed. (Washington, D.C, Smithsonian Institution Press), pp. 455-466. Rutzler, K., and Muzik, K. (1993). Terpios hoshinota, a new cyanobacteriosponge threatening Pacific reefs. Scientia Marina 57, 395-403. Reimer, J.D., Nozawa, Y., and Hirose, E. (2010). Domination and disappearance of the black sponge: a quarter century after the Initial Terpios outbreak in Southern Japan. Zoological Studies 50, 394. Sara, M., Bavestrello, G., Cattaneo-Vietti, R., and Cerrano, C. (1998). Endosymbiosis in sponges: relevance for epigenesis and evolution. Symbiosis 25, 57-70. Shi, C.-Y., Yang, H., Wei, C.-L., Yu, O., Zhang, Z.-Z., Jiang, C.-J., Sun, J., Li, Y.-Y., Chen, Q., Xia, T., and Wan, X.-C. (2011). Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics 12, 131. Soong, K., Yang, S.L., and Chen, C.A. (2009). A novel dispersal mechanism of a coral-threatening sponge, Terpios hoshinota (Suberitidae, Porifera). Zoological Studies 48, 596. Steiber, A. (2004). Carnitine: a nutritional, biosynthetic, and functional perspective. Molecular Aspects of Medicine 25, 455-473. Sutton, M.D., Smith, B.T., Godoy, V.G., and Walker, G.C. (2000). The SOS response: recent insights into umuDC-dependent mutagenesis and DNA damage tolerance. Annual Review of Genetics 34, 479-497. Swain, S., Mohanty, A., Tripathy, H.K., Mahapatra, N., Kar, S.K., and Hazra, R.K. (2010). Molecular identification and phylogeny of Myzomyia and Neocellia series of Anopheles subgenus Cellia (Diptera: Culicidae). Infection Genetics and Evolution 10, 931-939. Tang, S.-L., Hong, M.-J., Liao, M.-H., Jane, W.-N., Chiang, P.-W., Chen, C.-B., and Chen, C.A. (2011). Bacteria associated with an encrusting sponge (Terpios hoshinota) and the corals partially covered by the sponge. Environmental Microbiology, 1-13. Tang, S.L., Nuttall, S., Ngui, K., Fisher, C., Lopez, P., and Dyall-Smith, M. (2002). HF2: a double-stranded DNA tailed haloarchaeal virus with a mosaic genome. Molecular Microbiology 44, 283-296. Thacker, R.W., and Starnes, S. (2003). Host specificity of the symbiotic cyanobacterium Oscillatoria spongeliae in marine sponges, Dysidea spp. Marine Biology 142, 643-648. Thornberry, N.A. (1998). Caspases: enemies within. Science 281, 1312-1316. Usher, K.M. (2008). The ecology and phylogeny of cyanobacterial symbionts in sponges. Marine Ecology 29, 178-192. Vacelet, J., and Boury-Esnault, N. (1995). Carnivorous sponges. Nature 373, 333-336. Vicente, V.P., and Rutzler, K. (1990). Overgrowth activity by the encrusting sponge Chondrilla nucula on a coral reef in Puerto Rico. In New Perspective in Sponge Biology, K. Rutzler, ed. (Washington, D.C, Smithsonian Institution Press), pp. 436-442. Wada, H., Shintani, D., and Ohlrogge, J. (1997). Why do mitochondria synthesize fatty acids? Evidence for involvement in lipoic acid production. Proceedings of the National Academy of Sciences 94, 1591-1596. Wilkinson, C.R. (1978a). Microbial associations in sponges. I. ecology, physiology and microbial populations of coral reef sponges. Marine Biology 49, 161-167. Wilkinson, C.R. (1978b). Microbial associations in sponges. II. numerical analysis of sponge and water bacterial populations. Marine Biology 49, 169-176. Wilkinson, C.R. (1978c). Microbial associations in sponges. III. ultrastructure of in situ associations in coral reef sponges. Marine Biology 49, 177-185. Wilkinson, C.R. (1979). Nutrient translocation from symbiotic cyanobacteria to coral reef sponges. In Biologie des Spongiarires, L. C., and N. Boury-Esnault, eds. (Paris, Colloques du Centre National Recherche Scientifique), pp. 373-380. Wilkinson, C.R. (1992). Symbiotic interactions between marine sponges and algae. In Algae and Symbioses, Plants, Animals, Fungi, Viruses, Interactions Explored, W. Reisser, ed. (Bristol, Biopress LTD), pp. 112-151. Wilkinson, C.R., and Cheshire, A.C. (1988). Growth rate of Jamaican coral reef sponges after hurricane Allen. Biological Bulletin 175, 175-179. Wright, P.A. (1995). Nitrogen excretion: three end products, many physiological roles. Journal of Experimental Biology 198, 273-282. Xiang, L.-x., He, D., Dong, W.-r., Zhang, Y.-w., and Shao, J.-z. (2010). Deep sequencing-based transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus reveals insight into the immune-relevant genes in marine fish. BMC Genomics 11, 472. Zerbino, D.R., and Birney, E. (2008). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Research 18, 821-829. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40554 | - |
dc.description.abstract | 近年來台灣綠島地區的珊瑚大量地由平鋪狀星野黑皮海綿(以下簡稱黑皮海綿)覆蓋而死亡,稱為“珊瑚黑病”。野外觀察發現黑皮海綿的前、後端於外觀上有差異,而這些差異是前人研究中沒有被探討。因此,本研究針對綠島的黑皮海綿,採取前端、後端樣本分別進行電子顯微鏡的觀察及轉錄體的定序分析。另外建立一組與珊瑚隔離生長的解剖盒樣本,比較三個不同生長位置的黑皮海綿,討論他們在生理生化與外觀上差異之間的關係。電子顯微鏡觀察結果發現,黑皮海綿樣本體內含有大量的球狀藍綠菌及骨針,前端樣本的骨針呈隨機排列,而解剖盒海綿樣本則常呈束狀排列。此外,前端樣本的細胞狀況較後端樣本完整且良好。轉錄體的分析結果顯示,前端樣本較後端及解剖盒樣本表現較多與能量相關的基因,這些能量可能是黑皮海綿覆蓋珊瑚後掠食得到的,可以用來增殖與擴張生長空間。後端樣本則表現較多與細胞凋亡相關反應及DNA修復的基因,說明此部分的黑皮海綿正處於生理狀況較差或逆境的狀態。解剖盒樣本所表現的基因大多與細胞移動有關,與其絲狀結構及束狀排列的骨針相呼應。由於黑皮海綿細胞內含有大量的原核生物,待原核生物的轉錄體定序完成之後,將能經由互相比較黑皮海綿及內含的原核生物轉錄體的表現,期望能找出黑皮海綿與體內原核生物之間的相關的生理代謝途徑並推測黑皮海綿與內含的原核生物之間的關係,和黑皮海綿與珊瑚之間的交互作用。 | zh_TW |
dc.description.abstract | Recently, the corals in Lyudao, Taiwan, are prevalently suffered from the attack of “Black Disease”, caused by the overlaying of an encrusting sponge T. hoshinota. To understand the insights underlying T. hoshinota’s behavior, we sampled different parts of the sponge in Lyudao, including front-end, middle-site, and an isolated culture in mesh box as a control, for comparative purpose. The morphology of T. hoshinota was studied using electron microscopes, and the transcriptome profile was analyzed for validating possible associations between gene expression and appearance. The electron microscopes observation indicated that there were many coccus-like cyanobacteria, and tylostyle spicules were arranged regularly in the mesh box sample but disorderly in the front-end sample. Also, the front-end sample was in a healthier condition as being more intact compared to other samples. According to the transcriptomic analysis, the front-end sample had higher expression of the energy-related genes, suggesting that the front T. hoshinota might acquire energy by using coral as “food resource” for proliferation and territory expansion. The middle-site sample expressed more transcripts related to apoptosis and DNA repair, saying that this part of the sponge might be under stress. The preferred expression on cell motility genes in the mesh box sample revealed possible purpose of its silk-like appearance and might lead T. hoshinota to move. This transcriptomic study is just a start uncovering physiological and biochemical features of T. hoshinota. Further understandings about the interactions between coral, sponge, and associated bacteria can be obtained when the microbial gene expression data were incorporated. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T16:51:09Z (GMT). No. of bitstreams: 1 ntu-100-R98241218-1.pdf: 7712013 bytes, checksum: 830b4da6157c79b77ef1ded507938d78 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 中英文對照表 iv 表目錄 xiii 圖目錄 xiv 一、 研究背景 1 1.1. 海洋中的海綿 1 1.1.1. 海綿的特徵 1 1.1.2. 海綿的生殖行為 2 1.1.3. 海綿的分布 2 1.1.4. 海綿內與微生物的共生現象 3 1.1.5. 富藍綠菌海綿(cyanobacteriosponge) 4 1.1.6. 常見的海綿共生藍綠菌 5 1.2. 星野黑皮海綿 (Terpios hoshinota)介紹 6 1.2.1. 歷史及生態問題 6 1.2.2. 習性及構造 7 1.2.3. 內棲微生物 8 1.3. 研究動機與目的 8 二、 材料與方法 10 2.1 採樣地點及採樣方法 10 2.2 樣本的保存 10 2.3 電子顯微鏡觀察 11 2.4 全RNA萃取 12 2.5 RNA品質檢定 12 2.6 RNA組成 12 2.7 RNA樣本中真核與原核生物的比例 13 2.8 原核生物(藍綠菌為主)mRNA純化 13 2.9 次世代解序技術定序 15 2.10 定序品質檢定 16 2.11 序列組合 16 2.12 以KAAS進行KEGG資料庫比對 17 2.13 標準化 17 2.14 相對表現量熱圖 18 2.15 相對表現量三方比較圖 18 2.16 主要基因相對表現量差異比較 19 三、 結果 21 3.1. 比較不同部位黑皮海綿的顯微結構 21 3.1.1. SEM觀察 21 3.1.2. TEM觀察 21 3.2. 轉錄體定序樣本製備 22 3.2.1. 黑皮海綿樣本內RNA的組成 22 3.2.2. 黑皮海綿定序樣本RNA品質檢定 23 3.2.3. 黑皮海綿全RNA中,真核與原核RNA的比例 23 3.2.4. 原核生物(藍綠菌為主)定序樣本mRNA純化 24 3.3. 轉錄體定序結果 24 3.3.1. 定序結果與序列品質 24 3.3.2. 序列組合 25 3.3.3. 蛋白質功能及表現量標準化 25 3.4. 基因相對表現量比較結果 26 3.4.1. 基因比較熱圖及三方比較圖 26 3.4.2. 醣解作用及糖質新生作用 27 3.4.3. 脂肪酸的代謝與生成路徑 27 3.4.4. 胺基酸代謝與生成 28 3.4.5. 呼吸作用 28 3.4.6. 細胞移動 29 3.1.1. 細胞凋亡 30 3.4.7. 聚合酶 31 3.4.8. DNA修復功能蛋白 31 四、 討論與結論 32 4.1 電子顯微鏡觀察 32 4.1.1 SEM觀察 32 4.1.2 TEM觀察 33 4.2 原核生物mRNA純化 34 4.3 轉錄體生物資訊分析結果 35 4.4 代謝相關基因之相對表現量差異 35 4.5 移動相關基因之相對表現量差異 36 4.6 細胞凋亡相關基因之相對表現量差異 38 4.7 原核mRNA汙染問題 39 4.8 未來目標 40 4.9 結論 41 參考文獻 43 | |
dc.language.iso | zh-TW | |
dc.title | 星野黑皮海綿轉錄體之分析 | zh_TW |
dc.title | Transcriptome analysis of Terpios hoshinota | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 謝文陽(Wung-Yang Shieh) | |
dc.contributor.oralexamcommittee | 戴昌鳳(Chang-Feng Dai),劉秀美(Shiu-Mei Liu) | |
dc.subject.keyword | 星野黑皮海綿,黑皮海綿,藍綠菌,珊瑚黑病,電子顯微鏡,轉錄體定序,生理代謝途徑,細胞凋亡,細胞移動, | zh_TW |
dc.subject.keyword | T. hoshinota,cyanobacteria,coral,transcriptome,black disease,metabolism pathway,apoptosis,cell motility, | en |
dc.relation.page | 103 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-12 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 7.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。