Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40551
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝長富(Chang-Fu Hsieh)
dc.contributor.authorChih-Yuan Changen
dc.contributor.author張志遠zh_TW
dc.date.accessioned2021-06-14T16:51:02Z-
dc.date.available2010-08-05
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-29
dc.identifier.citation王俊能,1995,南仁山區亞熱帶雨林植物葉片水份狀態在不同生育地反應的研究。國立台灣大學植物學系研究所碩士論文。
王雅諄,2002,南仁山亞熱帶雨林木本植物生物量之估算。國立臺灣大學植物學硏究所碩士論文。
王鑫,1985,墾丁國家公園史前文化及生態資源。內政部營建署墾丁國家公園管理處。
江斐瑜,1991,南仁山區環境對土壤性質及化育作用之影響。國立臺灣大學農業化學硏究所碩士論文。
吳姍樺,1998,南仁山亞熱帶雨林短期森林動態之研究。國立台灣大學植物學系研究所碩士論文。
李彥屏,2005,風對南仁山不同生育地分布樹種苗木氣孔導度與蒸散率影響。國立屏東科技大學森林系碩士論文。
洪州玄,2003,南仁山迎風與背風分布樹種生態生理特性的比較。國立屏東科技大學森林系碩士論文。
范開翔,2005,東北季風對南仁山迎風與背風分布樹種苗木形態與生理活動之影響。國立屏東科技大學森林系碩士論文。
陳俐如,2005,鴛鴦湖地區台灣扁柏樹液流動之探討。國立東華大學自然資源管理研究所碩士論文。
楊政峯,1997,南仁山亞熱帶雨林四種優勢種林木生態生理學硏究 。國立台灣大學植物學系研究所碩士論文。
葉定宏,2006,南仁山欖仁溪樣區木本植物社會15年期動態。國立臺灣大學生態學與演化生物學硏究所。
謝長富、陳尊賢、孫義方、謝宗欣、鄭育斌、王國雄、蘇夢淮、江裴倫,1992,墾丁國家亞熱帶雨林永久樣區之調查研究,Ⅰ。、木本植物。墾丁國家公園管理處保育研究報告第85號。內政部營建署墾丁國家公園管理處。
謝長富、廖啟正、賴宜鈴,1996,墾丁國家公園熱帶雨林永久樣區之調查。墾丁國家公園管理處保育研究報告第94號。內政部營建署墾丁國家公園管理處。
蘇夢淮,1993,南仁山亞熱帶雨林樹冠層葉片結構之研究 。國立台灣大學植物學系研究所碩士論文。
蘇鴻傑、蘇中原1988。墾丁國家公園植群之多變數分析。中華林學季刊,21:17-32。
Arneth, A., F. M. Kelliher, G. Bauer, D. Y. Hollinger, J. N. Byers, J. E. Hunt, T. M. McSeveny, W. Ziegler, N. N. Vygodskaya, I. Milukova, A. Sogachov, A. Varlagin, and E. D. Schulze. 1996. Environmental regulation of xylem sap flow and total conductance of Larix gmelinii trees in eastern Siberia. Tree Physiology 16: 247-255.
Bovard, B. D., P. S. Curtis, C. S. Vogel, H. B. Su, and H. P. Schmid. 2005. Environmental controls on sap flow in a northern hardwood forest. Tree Physiology 25: 31-38.
Burrows, F. J., and F. L. Milthorpe. 1976. Stomatal conductance in the control of gas exchange. Pages 103-152 in T. T. Kozlowski, editor. Water deficits and plant growth. Academic Press, New York,.
Cowan, I. R. 1977. Stomatal behaviour and environment. Advances in Botanical Research 4: 117–228.
Daudet, F. A., X. Le Roux, H. Sinoquet, and B. Adam. 1999. Wind speed and leaf boundary layer conductance variation within tree crown - Consequences on leaf-to-atmosphere coupling and tree functions. Agricultural and Forest Meteorology 97: 171-185.
Ewers, B. E., D. S. Mackay, S. T. Gower, D. E. Ahl, S. N. Burrows, and S. S. Samanta. 2002. Tree species effects on stand transpiration in northern Wisconsin. Water Resources Research 38: 1103, doi:10.1029/2001WR000830.
Ewers, B. E., R. Oren, T. J. Albaugh, and P. M. Dougherty. 1999. Carry-over effects of water and nutrient supply on water use of Pinus taeda. Ecological Applications 9: 513-525.
Ewers, B. E., R. Oren, K. H. Johnsen, and J. J. Landsberg. 2001. Estimating maximum mean canopy stomatal conductance for use in models. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 31: 198-207.
Fan, S. W., W. C. Chao, and C. F. Hsieh. 2005. Woody floristic composition, size class distribution and spatial pattern of a subtropical lowland rainforest at Nanjen Lake, southernmost Taiwan. TAIWANIA 50: 307-326.
Fanjul, L., and H. G. Jones. 1982. Rapid stomatal responses to humidity. Planta 154: 135-138.
Farquhar, G. D., T. N. Buckley, and J. M. Miller. 2002. Optimal stomatal control in relation to leaf area and nitrogen content. Silva Fennica 36: 625-637.
Grace, J. 1974. Effect of wind on grasses .1. Cuticular and Stomatal Transpiration. Journal of Experimental Botany 25: 542-551.
Grace, J. 1977. Plant response to wind. Academic Press, London ; New York.
Grace, J., E. D. Ford, and P. G. Jarvis. 1981. Plants and their atmospheric environment : the 21st Symposium of the British Ecological Society, Edinburgh, 1979. Blackwell Scientific Publications, Distributed by Halsted Press, Oxford, Boston New York.
Grace, J., and J. Wilson. 1976. Boundary-layer over a Populus leaf. Journal of Experimental Botany 27: 231-241.
Granier, A. 1985. A new method of sap flow measurement in tree stems. Annales Des Sciences Forestieres 42: 193-200.
Granier, A. 1987a. Evaluation of transpiration in a Douglas-Fir stand by means of sap flow measurements. Tree Physiology 3: 309-319.
Granier, A. 1987b. Sap flow measurements in Douglas-Fir tree trunks by means of a new thermal method. Annales Des Sciences Forestieres 44: 1-14.
Hall, A. E., and M. R. Kaufmann. 1975. Stomatal response to environment with Sesamum-Indicum L. Plant Physiology 55: 455-459.
Hari, P., A. Makela, E. Korpilahti, and M. Holmberg. 1986. Optimal control of gas exchange. Tree Physiology 2: 169-176.
Hatton, T. J., S. J. Moore, and P. H. Reece. 1995. Estimating stand transpiration in a Eucalyptus-Populnea woodland with the heat pulse method - measurement errors and sampling strategies. Tree Physiology 15: 219-227.
Henzell, R. G., K. J. Mccree, C. H. M. Vanbavel, and K. F. Schertz. 1976. Sorghum genotype variation in stomatal sensitivity to leaf water deficit. Crop Science 16: 660-662.
Jones, H. G. 1992. Plants and microclimate. Cambridge Univ. Press, New York.
Jones, M. M., and H. M. Rawson. 1979. Influence of rate of development of leaf water deficits upon photosynthesis, leaf conductance, water-use efficiency, and osmotic potential in Sorghum. Physiologia Plantarum 45: 103-111.
Kramer, P. J., and T. T. Kozlowski. 1979. Physiology of woody plants. Academic Press, New York.
Lakso, A. N. 1979. Seasonal-changes in stomatal response to leaf water potential in Apple. Journal of the American Society for Horticultural Science 104: 58-60.
Larcher, W. 2003. Physiological plant ecology: ecophysiology and stress physiology of functional groups. 4th edition. Springer, Berlin, New York.
Martin, T. A., T. M. Hinckley, F. C. Meinzer, and D. G. Sprugel. 1999. Boundary layer conductance, leaf temperature and transpiration of Abies amabilis branches. Tree Physiology 19: 435-443.
Mcburney, T., and P. A. Costigan. 1984. The relationship between stem diameter and water potentials in stems of young Cabbage plants. Journal of Experimental Botany 35: 1787-1793.
McJannet, D., P. Fitch, M. Disher, and J. Wallace. 2007. Measurements of transpiration in four tropical rainforest types of north Queensland, Australia. Hydrological Processes 21: 3549-3564.
Meinzer, F. C., and D. A. Grantz. 1991. Coordination of stomatal, hydraulic, and canopy boundary-layer properties - do stomata balance conductances by measuring transpiration. Physiologia Plantarum 83: 324-329.
Miller, E. C. 1938. Plant physiology. McGraw-Hill, New York.
Ng, P. A. P., and P. G. Jarvis. 1980. Hysteresis in the response of stomatal conductance in Pinus-Sylvestris L needles to light - observations and a hypothesis. Plant Cell and Environment 3: 207-216.
Nobel, P. S. 1974. Introduction to biophysical plant physiology. W. H. Freeman and company, San Francisco.
Oren, R., R. Zimmermann, and J. Terborgh. 1996. Transpiration in upper Amazonia floodplain and upland forests in response to drought-breaking rains. Ecology 77: 968-973.
Rogers, C. A., R. D. Powell, and P. J. H. Sharpe. 1979. Relationship of temperature to stomatal aperture and potassium accumulation in guard cells of Vicia-Faba. Plant Physiology 63: 388-391.
Sala, A., S. D. Smith, and D. A. Devitt. 1996. Water use by Tamarix ramosissima and associated phreatophytes in a Mojave Desert floodplain. Ecological Applications 6: 888-898.
Schulze, E. D., U. Buschbom, M. Evenari, O. L. Lange, and L. Kappen. 1972. Stomatal responses to changes in humidity in plants growing in desert. Planta 108: 259-270.
Sharkey, T. D., and K. Raschke. 1981. Effect of light quality on stomatal opening in leaves of Xanthium-Strumarium L. Plant Physiology 68: 1170-1174.
Simmelsgaard, S. E. 1976. Adaptation to water stress in Wheat. Physiologia Plantarum 37: 167-174.
Slatyer, R. O. 1967. Plant-water relationships. Academic Press, London, New York,.
Smith, D. M., and P. G. Jarvis. 1998. Physiological and environmental control of transpiration by trees in windbreaks. Forest Ecology and Management 105: 159-173.
Srivastava, A., and E. Zeiger. 1995. Guard-cell zeaxanthin tracks photosynthetically active radiation and stomatal apertures in Vicia-Faba leaves. Plant Cell and Environment 18: 813-817.
Tang, J. W., P. V. Bolstad, B. E. Ewers, A. R. Desai, K. J. Davis, and E. V. Carey. 2006. Sap flux-upscaled canopy transpiration, stomatal conductance, and water use efficiency in an old growth forest in the Great Lakes region of the United States. Journal of Geophysical Research-Biogeosciences 111: G02009, doi: 10.1029/2005JG000083.
Taylor, P. J., I. K. Nuberg, and T. J. Hatton. 2001. Enhanced transpiration in response to wind effects at the edge of a blue gum (Eucalyptus globulus) plantation. Tree Physiology 21: 403-408.
Turner, N. C. 1974. Stomatal response to light and water under field conditions. Pages 423–432 in R. L. Bieleski, A. R. Ferguson, and M. M. Cresswell, editors. Mechanisms of Regulation of Plant Growth. The Royal Society of New Zealand, Bulletin 12. Wellington.
Turner, N. C., and P. J. Kramer. 1980. Adaptation of plants to water and high temperature stress. Wiley, New York.
Valentine, H. T. 1988. A carbon-balance model of stand growth - a derivation employing pipe-model theory and the self-thinning rule. Annals of Botany 62: 389-396.
Vertessy, R. A., R. G. Benyon, S. K. Osullivan, and P. R. Gribben. 1995. Relationships between stem diameter, sapwood area, leaf-area and transpiration in a young mountain ash forest. Tree Physiology 15: 559-567.
Warrit, B., J. J. Landsberg, and M. R. Thorpe. 1980. Responses of apple leaf stomata to environmental-factors. Plant Cell and Environment 3: 13-22.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40551-
dc.description.abstract植物藉由調控葉片氣孔的大小來控制蒸散作用和光合作用的速率,而這些生理功能亦受到外在環境因子,例如溼度、光度、溫度、土壤含水量、以及風力的影響。過往少有研究探討風力因子與蒸散作用之間的關係,因此本研究利用Granier-type Sensor測量不同風力影響下樹木的樹液流通量 (sap flux)的表現與差異。研究地區位於台灣南部的墾丁國家公園南仁山生態保護區內,前人研究指出保護區內的植被可區分為迎風、背風、緩風以及溪谷共四類型,本研究在迎風與緩風兩處生育地區選擇三種冠層優勢樹種,分別為迎風及緩風坡分布的港口木荷 (Schima superba var. kankaoensis)、廣泛分布的長尾栲 (Castanopsis cuspidate var. carlesii),以及迎風坡分布的小葉赤楠 (Syzygium buxifolium),每一種各選三株。在一年多的時間內連續監測樹液流通量,以探討三種樹種在不同時段內其樹液流通量的變化,並比較在相同生育地的三種樹種樹液流通量表現是否有所不同,以及在同種樹種不同生育地其樹液流通量表現是否有所不同。此外還同時測量光合作用有效光輻射光量 (photosynthetically active radiation;PAR)、溫度、相對溼度、風速與風向,來檢視環境因子與三種不同分佈類型樹種樹液流通量之間的關係,探討風力是否會影響三種樹種的樹液流通量的表現有所影響。
結果顯示,三種樹種在晴天時候的日樹液流通量分布圖大致成倒V字型,在中午期間樹液流通量為最高。但是在雨天的時候,日樹液流通量則大幅降低,呈現趨近0的平滑曲線。就季節變化而言,植株在冬季有較低的樹液流通量、夏季有較高的樹液流通量。三種樹種全部的樹液流通量值的出現頻率分布圖為反J型分布,表示樹液流通量值位於前半部較小的值出現的次數大於後半部的值,表示較小的樹液流通量佔有的地位相對重要。在颱風吹襲的狀態下,其樹液流通量的表現則類似於雨天的表現,但在強烈風速下,長尾栲的樹液流通量有異常上升的趨勢。
三種樹種的日總累積樹液流通量,以港口木荷的流通量最高,小葉赤楠的最低。在迎風與緩風生育地的比較上,三種樹種的樹液流通量皆有差異,其中港口木荷在迎風區有較高的樹液流通量,而長尾栲與小葉赤楠在緩風區有較高的樹液流通量,顯示不同物種間的日累積樹液流通量在兩生育地間有不同的表現。
根據環境因子與樹液流通量之關係和逐步迴歸分析的結果顯示,對港口木荷與小葉赤楠而言,光合作用有效光輻射光量值、日均溫與風速皆為影響樹液流通量的因子;但對長尾栲而言,風速並非明顯的影響因子。總結來看,光合作用有效光輻射光量與溫度為最主要影響日累積樹液流通量的因子,而風速只有微幅的調控,並且因樹種而異。但本實驗因水蒸氣壓差 (VPD)的數據資料有所缺失,使得水蒸氣壓差對於樹液流通量的影響程度難以清楚釐清。
在分級過後的環境因子中,風速對於港口木荷的影響較為明顯。在低溫時,較強的風速才會抑制港口木荷的樹液流通量;而當溫度升高的時候,低風速即會對樹液流通量產生抑制的作用。對長尾栲而言,並未發現風速對樹液流通量有明顯的影響。小葉赤楠大部分的樣木顯示出類似於長尾栲的表現,即風速對樹液流通量並無特殊的影響,但是有一棵樣木顯示類似港口木荷的反應,其風速對於樹液流通量有抑制的作用,導致樹液流通量在高光合作用有效光輻射光量之下也沒有快速升高的現象。
綜合以上結果推測,小葉赤楠及長尾栲則屬迎風型樹種和廣泛分布型樹種,對迎風環境上的長期適應,造成內部生理上 (氣孔調控)與外部形態上的特化,而產生抗風的機制,以減少水分的散失。緩風型樹種的港口木荷則在迎風區有較高的樹液流通量,顯示在水份充足的狀態下,港口木荷蒸散量的增加,有助於生長量的提升,幫助港口木荷在強風的狀態下能夠生長存活,為另一種適應的機制。
本研究顯示,在光合作用有效光輻射光量值高的期間 (如:中午、晴天與夏季),植株有較高的樹液流通量, 顯示光合作用有效光輻射光量對樹液流通量有重要的影響,與其他地區的研究相符合。三種樹種在不同生育地的樹液流通量值有所不同,可能與樹種的葉片結構有關。相同樹種在風力影響程度不同的生育地,其樹液流通量的表現也有所差異,顯示與風力因子有關。在探討的環境因子中,光合作用有效光輻射光量與溫度對於樹液流通量的表現影響較大,風速則僅呈現微幅調控的效能。
zh_TW
dc.description.abstractPlants use stomata to control the rate of transpiration and photosynthesis. These physiological processes may be also regulated by environmental factors such as humidity, light, temperature, soil moisture, and wind stress.Only a few studies have attempted to investigat the relationship between wind speed and transpiration. Therefore, this study seeks to understand the performances of sap flux under different degrees of wind stress, using the Granier-type sensors to measure sap flux. The study site is located in the Nanjenshan Reserve, Ken-Ting National Park, southern Taiwan. Vegetation in the study area was classified into four habitat types, including windward, leeward, intermediate and valley. Three dominant canopy-tree species slected for this study were Schima superba var. kankaoensis (windward and intermediate type), Castanopsis cuspidate var. carlesii (widely distributed type) and Syzygium buxifolium (windward type). Three individuals (replicates) of each one of the three species were used for the following measurements. Sap flux values were continually measured for each individual over a period of 1.5 years. Sap flux patterns of three tree species were then compared with their circulation changes at different time scales. This study examined the performance of sap flux of three species in the same habitats and compared the performance of sap flux of the same species between windward and intermediate habitats. Photosynthetically active radiation (PAR), temperature, humility, wind speed and wind direction were recorded in the meantime. The relationships between sap flux and environmental factors were analyzed and the importance of wind effects was discussed.
The results showed that in sunny days, the daily sap flux of all three species in different habitats had an inverted V-shaped pattern, with the highest flux occurring at noon. However, the daily sap flux decreased dramatically in rainy days, with a relatively smooth curves approximated to y = 0 line. As for yearly sap flux distribution patterns, sum of daily sap flux was higher in the summer than in the winter. Sap flux data of the three species were anti-J distributions. It means that the frequencies of low sap flux values are far higher than the frequencies of high sap flux values. The performance of sap flux during typhoon days was similar to that during rainy day, but sap flux of Castanopsis cuspidate var. carlesii showed an unusual increase in strong wind.
In term of the sum of daily sap flux of the three species, Schima superba var. kankaoensis had highest values and Syzygium buxifolium the lowest values. Individuals of same species growing in windward and intermediate habitats had significant differences in sap flux, such that Schima superba var. kankaoensis in the windward habitat had higher sap flux than those in the intermediate habitat, but Castanopsis cuspidate var. carlesii and Syzygium buxifolium had opposite patterns.
According to results from plotting the linear relationships between sap flux and environmental factors and the results of stepwise analysis, PAR, temperature and wind speed were the major factors determining the sap flux of Schima superba var. kankaoensis and Syzygium buxifolium. But for Castanopsis cuspidate var. carlesii, there was no obvious relationship between sap flux and wind speed. Due to missing data of vapor pressure difference (VPD), the relationship between sap flux and VPD is still not clarified.
The distribution patterns of grading environmental factors and sap flux of three species are different. Sap flux of Schima superba var. kankaoensis was inhibited by the strong winds under low temperature. When the temperature increased, inhibition occurred at a lower wind speed. There was no special pattern between sap flux and wind for Castanopsis cuspidate var. carlesii and Syzygium buxifolium. Only one tree sample of Syzygium buxifolium showed a similar performance to Schima superba var. kankaoensis. It showed that wind speed could inhibit the rising of sap flux at high PAR.
Castanopsis cuspidate var. carlesii and Syzygium buxifolium which are widely distributed and windward species are more plastic and able to adapt to their environment due to long-term morphological and physiological modifications. However, Schima superba var. kankaoensis, an intermediate species, had higher sap flux in the windward habitat. The increases of the transpiration of Schima superba var. kankaoensis result the increases of growth increment in the habitat which had sufficient water. This kind of adaptation mechanism could help Schima superba var. kankaoensis to survive in strong wind stress.
This study shows that PAR has an important impact on sap flux because there is higher sap flux under PAR conditions (such as noon, sunny day, summer). The differences in sap flux values among three species in the same habitat might be related to differences in leaf structure. Sap flux values of individuals the same species in windward and intermediate habitats were different, suggesting that wind is related to transpiration activities. Among the examined environmental factors, PAR and temperature have greater effects on sap flux, while wind speed only affects the performance of sap flux slightly.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:51:02Z (GMT). No. of bitstreams: 1
ntu-97-R95b44015-1.pdf: 14203884 bytes, checksum: 3e870b79a57a09ee6191a19af28828dc (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 iii
摘要 v
Abstract vii
目錄 xi
圖目錄 xiii
表目錄 xiii
附圖目錄 xvii
壹、前言 1
貳、研究方法 7
(一) 研究地區環境概述 7
1. 地理位置 7
2. 土壤因子 7
3. 氣候因子 9
4. 研究地植被概況 10
(二) 實驗方法 12
1. 樹液流通量之測量 12
2. 環境因子的測量 14
3. 樹種的選取 15
4. 實驗樣木的基本資料 17
5. 實驗設計與儀器架設 19
(三) 資料的處理 21
(四) 資料的分析 22
參、研究結果 25
(一) 環境因子每月平均資料 25
(二) 三種樹種在不同時段內其樹液流通量的變化 32
1. 實驗樣木的樹液流通量值日變化分布圖 32
2. 實驗樣木的樹液流通量值年變化分布圖 34
3. 實驗樣木的樹液流通量值頻率分布圖 36
(三) 相同環境中三種樹種在不同月份下其樹液流通量的差別 40
(四) 不同環境中同一種樹種在不同月份下其樹液流通量的差別 44
(五) 颱風狀況下實驗樣木樹液流通量的表現 47
(六) 每日累積總樹液流通量值和其對應的日環境因子線性迴歸之關係 54
(七) 每日累積總樹液流通量值與日環境因子作逐步迴歸分析 60
(八) 分級資料的趨勢關係 65
肆、討論 69
(一) 三種樹種在不同時段內其樹液流通量的變化 69
(二) 在相同生育地中三種樹種日累積樹液流通量表現 70
(三) 在不同生育地中同種樹種日累積樹液流通量表現 73
(四) 各項環境因子與三種樹種樹液流通量之間的關係 74
1. 光合作用有效光輻射光量與樹液流通量之關係 74
2. 溫度與樹液流通量之關係 75
3. 水蒸氣壓差與樹液流通量之關係 76
4. 風速與樹液流通量之關係 76
(五) 颱風對於三種樹種樹液流通量的影響 77
(六) 分級的環境因子與三種不同分佈類型樹種樹液流通量之關係 77
(七) 生長量與三種不同分佈類型樹種樹液流通量之關係 78
伍、結論 83
陸、參考文獻 85
附圖 89
dc.language.isozh-TW
dc.subject蒸散作用zh_TW
dc.subject南仁山zh_TW
dc.subject風zh_TW
dc.subject樹液流通量zh_TW
dc.subject亞熱帶雨林zh_TW
dc.subjectWinden
dc.subjectTranspirationen
dc.subjectSubtropical foresten
dc.subjectSap fluxen
dc.subjectNanjenshanen
dc.title台灣南仁山亞熱帶雨林三種樹種的樹液流通量與風速及其他環境因子之關係zh_TW
dc.titleEffects of Wind Speed and Other Environmental Factors on Sap Flux of Three Tree Species in a Subtropical Rainforest of Nanjenshan, South Taiwanen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.coadvisor唐劍武(Jian-wu Tang)
dc.contributor.oralexamcommittee郭耀綸(Yau-Lun Kuo),高文媛(Wen-Yuan Kao)
dc.subject.keyword樹液流通量,風,南仁山,亞熱帶雨林,蒸散作用,zh_TW
dc.subject.keywordSap flux,Wind,Nanjenshan,Subtropical forest,Transpiration,en
dc.relation.page87
dc.rights.note有償授權
dc.date.accepted2008-07-31
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
13.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved