請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40536
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳永耀 | |
dc.contributor.author | Shih-Kang Lin | en |
dc.contributor.author | 林世康 | zh_TW |
dc.date.accessioned | 2021-06-14T16:50:34Z | - |
dc.date.available | 2010-08-06 | |
dc.date.copyright | 2008-08-06 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-29 | |
dc.identifier.citation | References
[1.] N. Cobb and A. Zakhor, “Fast, low-complexty mask design,” in Proc. SPIE Optical Microlithography, 1995, vol. 2440, pp. 313–327. [2.] S. Sayegh and B. Saleh, “Image design: Generation of a prescribed image at the output of a bandlimited system”, IEEE Transcation on Pattern Analysis and Machine Intelligence 5 (1983), 441-445. [3.] S. Sayegh, B. Saleh, and K. Nashold, ”Image design: Generation of a prescribed image through a diffraction limited system with high-contrast recording”, IEEE Transaction on Acoustics, Speech and Signal Processing 33 (1985), 460-465. [4.] K. Nashold and B. Saleh, “Image construction through diffraction-limited high contrast imaging system: An iterative approach”, Journal of Optical Society of America A - Optics Image Science and Vision 2 (1985), 635-643. [5.] S. Sherif, B. Saleh, and R. Leone, “Binary image synthesis using mixed linear integer programming”, IEEE Transactions on Image Processing 4 (1995), 1252-1257. [6.] V.C. Pati and T. Kailath, “Phase-shifting masks for microlithography : Automated design and mask requirements”, Journal of Optical Society of America A - Optics Image Science and Vision 9 (1994), 2438-2452. [7.] Y. Liu and A. Zakhor, “Binary and phase shifting mask design for optical lithography”, IEEE Transactions on Semiconductor Manufacturing 5 (1992), 138-151. [8.] Y. Pati, A. Teolis, D. Park, R. Bass, K-W Rhee, B. Bradie, and M.C. Peckerar, “An error measure for dose correction in e-beam nanolithography”, Journal of Vaccuum Science and Technology B 8 (1990), 1882-1988. [9.] M.C. Peckerar and C.R.K. “Marrian, Error measure comparison of currently employed dose- modulation schemes for e-beam proximity effect control”, Electron-Beam, X-Ray, EUV and Ion- Beam Submicrometer Lithographies for Manufacturing, Proc. SPIE, vol. 2437, 1995, pp. 222-238. [10.] Y. Oh, J. C. Lee, and S. Lim, “Resolution enhancement through optical proximity correction and stepper parameter optimization for 0.12-μm mask pattern”, Optical reduction of computations Microlithography, Proc. SPIE, vol. 3679, 1999, pp. 607-613. [11.] A. Erdmann, R. Farkas, T. Fuhner, B. Tollkuhn, and G. Kokai, “Towards automatic mask and source optimization for optical lithography”, Optical Microlithography, Proc. SPIE, vol. 5377, 2004, pp. 646-657. [12.] Y. Granik, “Solving inverse problems of optical microlithography”, Optical Microlithography, Proc. SPIE, vol. 5754, 2005, pp. 506-526. [13.] Y. Liu, D. Abrams, L. Pang, and Andrew Moore, “Inverse lithography technology principles in practice: Unintuitive patterns”, BACUS Symposium on Photomask Technology, Proc. SPIE, vol. 5992, 2005, pp. 231-238. [14.] S. Owa and H. Nagasaka, “Immersion lithography; its potential performance and issues”, Optical Microlithography, Proc. SPIE, vol. 5040, 2003, pp. 724-733. [15.] L. Liebmann, S. Mansfield, A. Wong, M. Lavin, W. Leipold, and T.Dunham, “TCAD development for lithography resolution enhancement”, IBM Journal of Research and Development 45 (2001), 651-665. [16.] M. Born and E. Wolfe, Principles of Optics. Cambridge University Press, 1999. [17.] P. Choudhury, Handbook of Microlithography, Micromachining and Microfabrication. Bellingham, WA: SPIE, 1997. [18.] S. Robertson, C. Mack, and M. Maslow, “Toward a universal resist dissolution model for lithography simulation”, Lithography for Semiconductor Manufacturing II, Proc. SPIE, vol. 4404, 2001, pp. 111-122. [19.] J. Randall, K. Ronse, T. Marschner,M. Goethals, and M. Ercken, “Variable threshold resist models for lithography simulation”, in Proc. SPIE Optical Microlithography, 1999, vol. 3679, pp. 176–182. [20.] C. Ahn, H. Kim, and K. Baik, “Novel approximate model for resist process”, Optical Microlithography, Proc. SPIE, vol. 3334, 1998, pp. 752-763. [21.] W. Huang, C. Lin, C. Kuo, C. Huang, J. Lin, J. Chen, R. Liu, Y. Ku, and B. Lin, “Two threshold resist models for optical proximity correction”, Optical Microlithography, Proc. SPIE, vol. 5377, 2001, pp. 1536-1543. [22.] R.G. Wilson, Fourier Series and Optical Transform Techniques in Contemporary Optics. New York: Wiley, 1995. [23.] W. Duch and N. Jankowski, “Survey of neural transfer functions”, Comput. Surv., vol. 2, pp. 163–213, 1999. [24.] C.T. Kelly, Iterative Methods for Optimization. Philadelphia, PA:SIAM, 1999. [25.] M. R. Hestenes and E. Eduard, “Methods of Conjugate Gradients for Solving Linear Systems”, Journal of Research of the National Bureau of Standards, 49 (1952). [26.] ITRS, 2007 lithography roadmap – optical mask requirements, available at http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_Lithography.pdf [27.] B. J. Lin, lecture notes on Microlithography Theory and Practice. Department of electrical engineering, National Taiwan University, winter, 2007. [28.] M. D. Levenson, N. S. Viswanathan, and R. A. Simpson. “Improving resolution in photolithography with a phase-shifting mask”, IEEE Transactions on Electron Devices, ED-29 No. 12:pp.1828-1836, 1982. [29.] http://www.luminescent.com/ [30.] 朱冠儒, “Image Modeling for a High Numerical Aperture Microlithography System”, 國立台灣大學電機工程研究所碩士論文, 2007. [31.] http://nano.nchc.org.tw/dictionary/Optical_Lithography.html [32.] N. Cobb and Y. Granik, “Dense OPC for 65 nm and below”, presented at the SPIE BACUS Symp. Photomask Technology, 2005. [33.] J. Peterson, “Analytical description of anti-scattering and scattering bar assist features”, Optical Microlithography, Proc. SPIE, vol. 4000, 2000, pp. 77-89. [34.] A. Poonawala and P. Milanfar, “Prewarping techniques in imaging: Applications in nanotechnology and biotechnology,” in Proc. SPIE Electronic Imaging, 2005, vol. 5674, pp. 114–127. [35.] A. Moore, T. Lin, Y. Liu, G. Russell, L. Pang, and D. Abrams, “Inverse lithography technology at low k1: Placement and accuracy of assist features”, BACUS Symposium on Photomask Technology, Proc. SPIE, vol. 6349, 2006. [36.] S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multi-frame super-resolution”, IEEE Transcation on Image Processing 13, 1327-1344, 2004. [37.] Yi-Sheng Su, Philip C. W. Ng, Kuen-Yu Tsai, and Yung-Yaw Chen, “Design of automatic controllers for model-based OPC with optimal resist threshold determination for improving correction convergence”, Optical Microlithography XXI, Proc. SPIE, vol. 6924, 2008. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40536 | - |
dc.description.abstract | 在半導體的領域中,因為晶片上的電晶體數目不斷的增加以得到更好的效能,光學微影系統的影像解析度需不斷的追求進步,目前已有許多的解析度增進技術 (RETs) 被廣泛的使用,像是離軸照明 (OAI)、相偏移光罩 (PSM)、(光學鄰近效應) OPC此等的技術,這些技術仍然持續的被改進而能更符合半導體界的需求。
在本篇論文當中,將會著重在反向光學微影(ILT)的光罩設計此一技術,這是一個可以增進影像解析度的方法,其著重於k1參數的降低,由於光波在通過90nm以下尺寸的狹縫會產生嚴重的繞射現象,因此反向光學微影技術的研究便是針對在IC製程上小尺度的光罩所產生的繞射現象,在光罩設計時將繞射現象考慮進去,設計出最佳的光罩形狀。將這樣的問題以數學化的方式表達成一個最佳化問題,模型架構分成光學成像部份和阻劑效應部份,並且將問題設定在連續的維度之內,而非二元化的維度,使用共軛梯度法作為最佳化演算法,透過迭代計算將可以得到最佳化的光罩。在本論文之中,亦討論了計算複雜度的問題,這牽涉到整體的計算時間,有效的降低計算時間,將會更加符合經濟效益,我們提出了一個計算流程來達到縮減計算時間的目標,將原始光罩作切割並分部最佳化計算,之後在分別的組合起來,並且是建立在先前的最佳化演算法之上。此外,設計和執行一些模擬,將會用模擬的結果來驗證我們的想法,可以有效的縮減計算時間於反向光學微影的光罩設計。 | zh_TW |
dc.description.abstract | In the field of microlithography the demand for highly integrated electronic circuits has motivated investigations into better image resolutions. Inverse lithography technique is a revived resolution enhancement technique (RET), which could decrease semiconductor process coefficient k1 in the Rayleigh criterion and can improve the image resolution. Inverse lithography attempts to synthesize the input mask which leads to the desired output wafer pattern by inverting the forward model from mask to wafer. An optimization strategy is introduced to promote the generation and placement of sub-resolution assist features. This approach uses the pixel-based mask representation, a continuous function formulation, and gradient-based iterative optimization techniques to solve the inverse problem. The continuous function formulation with analytic calculation of the gradient in O(MNlog(MN)) operations for an M × N pixel pattern makes it practically feasible. We propose a two step strategy for our optimization problem. The original mask is split into several parts, and processed individually. Later, all parts are combined and optimized to derived complete mask for lithography. The process would converge to the error tolerance faster than the original one-step approach. After this process, the optimal mask would be generated, and the computational time would be shorter than the original optimization process. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T16:50:34Z (GMT). No. of bitstreams: 1 ntu-97-R95921015-1.pdf: 2669018 bytes, checksum: c66eb7d879aa2c8387b4c3ba324b2dde (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | Abstract I
摘要 II Contents III List of Figures V List of Tables IX Chapter 1 Introduction 1 1.1 Optical Microlithography 1 1.2 Motivation 2 1.3 Previous Methods 4 1.4 Thesis Overview 5 Chapter 2 Microlithography and Resolution Enhancement Techniques 7 2.1 Rayleigh Criterion 7 2.2 Moore’s Law 9 2.3 Resolution Enhancement Technique 10 2.3.1 Off-axis Illumination 11 2.3.2 Phase Shift Mask 12 2.3.3 Optical Proximity Correction 13 2.4 Inverse Optical Microlithography 18 Chapter 3 Formulate Inverse Optical Microlithography Problem 23 3.1 Approximated Forward Process Model 23 3.2 Optimization Problem Formulation 28 3.3 Optimization Method 31 3.3.1 Gradient Descent Method 31 3.3.2 Conjugate Gradient Descent Method 33 3.4 Simulation Results 37 3.4.1 Program Verification 37 3.4.2 Optimization Simulation 40 Chapter 4 Reduction of Optimization Computations 47 4.1 Error Tolerance 47 4.2 Mask Split 51 4.3 Pre-optimization as Initial Value 62 4.4 Results 70 Chapter 5 Conclusions and Future Work 76 References 78 | |
dc.language.iso | en | |
dc.title | 反向光學微影光罩設計之計算量縮減方法 | zh_TW |
dc.title | Reduction of Computations in the Mask Design of Inverse Optical Microlithography | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 蔡坤諭 | |
dc.contributor.oralexamcommittee | 顏家鈺,林進燈 | |
dc.subject.keyword | 反向光學微影,光罩設計,最佳化,共軛梯度法,計算複雜度降低, | zh_TW |
dc.subject.keyword | Inverse lithography,RETs,pixel-based approach,optimization,reduction of computations,split, | en |
dc.relation.page | 81 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-31 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 2.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。