Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40530
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李百祺(Pai-Chi Li)
dc.contributor.authorChien-Ming Chengen
dc.contributor.author程健銘zh_TW
dc.date.accessioned2021-06-14T16:50:21Z-
dc.date.available2010-08-05
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-29
dc.identifier.citation[1] Omar S. Khalil, “Spectroscopic and Clinical Aspects of Noninvasive Glucose Measurements,” Clinical Chemistry, Vol.45, No.2, pp.165-177, 1999.
[2] Mark A. Amold, Gary W. Small, “Noninvasive Glucose Sensing,” Analytical Chemistry, Vol.77, No.17, pp.5429-5439, 2005.
[3] Roger J. McNichols, Gerard L. Cote, “Optical Glucose Sensing in Biological Fluids: An Overview,” Journal of Biomedical Optics, Vol.5, No.1, pp.5-16, 2000.
[4] American Diabetes Association, http://www.diabetes.org/
[5] http://bbs.tnbz.com/thread-34383-1-1.html
[6] World Health Organis, http://www.who.int/en/
[7] 衛生署http://www.doh.gov.tw/
[8] A. P. F. Turner, B. Chen, S. A. Piletsky, “In Vitro Diagnostics in Diabetes: Meeting the Challenge,” Clinical Chemistry, Vol.45, No.9, pp.1596-1601, 1999.
[9] http://www.cyshb.gov.tw/announce/doc/monitor.ppt
[10] Glucowatch.com
[11] S. F. Malin, T. L. Ruchti, T. B. Blank, S. N. Thennadil, S. L. Monfre, “Noninvasive Prediction of Glucose by Near-infrared Diffuse Reflectance Spectroscopy,” Clinical Chemistry, Vol.45, No.9, pp.1651-1658, 1999.
[12] O. S. Khalil, “Non-invasive Glucose Measurement Technologies: An Update from 1999 to the Dawn of the New Millennium,” Diabetes Technology and Therapeutics, Vol.6, No.5, 2004.
[13] J. T. Olesberg, M. A. Arnold, C. Mermelstein, J. Schmitz, J. Wagner,” Tunable Laser Diode System for Noninvasive Blood Glucose Measurements,” Society for Applied Spectroscopy, Vol.59, No.12, 2005.
[14] Y. Wickramasinghe, Y. Yang, S. A. Spencer, “Current Problems and Potential Techniques in In Vivo Glucose Monitoring,” Journal of Fluorescence, Vol.14, No.5, 2004.
[15] W. Schrader, P. Meuer, J. Popp, W. Kifer, JU. Menzebach, B. Schrader, “Non-invasive Glucose Determination in the Human Eye,” Journal of Molecular Structure, Vol.735-736, pp.299-306, 2005.
[16] Ryan J. Russell, Michael V. Pishko, “A Fluorescence-Based Glucose Biosensor Using Concanavalin A and Dextran Encapsulated in a Poly(ethylene glycol) Hydrogel,”Analytical Chemistry, Vol.71, No.15, pp.3126-3132, 1999.
[17] Barry R. Masters, Peter T. C. So, Enrico Gratton, “Multiphoton Excitation Fluorescence Microscopy and Spectroscopy of In Vivo Human Skin,” Biophysical Journal, Vol.72, pp.2405-2412, 1997.
[18] Xing-Xian Cai, “Polarization Interferometer for Measurement of Optical Rotation and Concentration Glucose,” Master thesis, National Central University, 2007.
[19] A. Caduff, E. Hirt, Yu. Feldman, Z. Ali, L. Heinemann, “First Human Experiments with a Novel Non-invasive, Non-optical Continuous Glucose Monitoring System,” Biosensors and Bioelectronics, Vol.19, pp.209-217, 2003.
[20] Hillier TA, Abbott Rd, Barrett EJ, “Hyponatremia Evaluating the Correction Factor for Hyperglycemia,” The American Journal of Medicine, Vol.106, pp.399-403, 1999.
[21] M. Xu, L.-H. Wang, “Photoacoustic Imaging in Biomedicine,” Review of Scientific Instruments, 2006.
[22] P. C. Li, S. W. Huang, C. W. Wei, Y. C. Chiou, C. D. Chen, C. R. C. Wang, “Photoacoustic Flow Measurements by Use of Laser Induced Shape Transitions of Gold Nanorods,” Optics Letters, Vol.30, No.24, pp. 3341–3343, 2005.
[23] Rinat O. Esenaliev, Irina V. Larina, Kirill V. Larin, Donald J. Deyo, Massoud Motamedi, Donald S. Prough, “Optoacoustic Technique for Noninvasive Monitoring of Blood Oxygenation: A Feasibility Study,” Applied Optics, Vol.41, No.22, pp.4722-4731, 2002.
[24] J. A. Viator, L. O. Svaasand, G. Aguilar, B. Choi, and J. S. Nelson, “Photoacoustic Measurement of Epidermal Melanin,” Proceeding of SPIE, Vol.4960, pp.14–20, 2003.
[25] Robert A. Kruger, Keith Stantz, and William L. Kiser, “Thermoacoustic CT of the Breast,” Proceeding of SPIE, Vol.4682, pp. 521-525, 2002.
[26] R. O. Esenalive, A. A. Karabutove,and A. A. Oraevsky, “Sensitivity of Laser Opto-acoustic Imaging in Detection of Small Deeply Embedded Tumors,” IEEE Journal of Quantum Electronics, Vol.5, No.4, pp. 981–988, 1999.
[27] A. A. Karabutove, “Backward Mode Detection of Laser-induced Wide-band Ultrasonic Transients with Optoacoustic Transducer,” Journal of Applied Physics, Vol.87, No.4, 2000.
[28] L. V. Wang, “Noninvasive Laser-induced Photoacoustic Tomography for Structural and Functional In Vivo Imaging of Brain,” Nature Biotechnology, Vol.21, No.7, pp.803–806, 2003.
[29] Chih-Wei Hsu, “Glucose Concentration Measurements Utilizing a Photoacoustic Technique,” Master thesis, National Taiwan University, 2006.
[30] G. B. Christison, H. A. MacKenzie, “Laser Photoacoustic Determination of Physiological Glucose Concentrations in Human Whole Blood,” Medical and Biological Engineering and Computing, Vol.31, pp. 284-290, 1993.
[31] K. M. Quan, G. B. Christison, H. A. MacKenzie, P. Hodgson, “Glucose Determination by a Pulsed Photoacoustic Technique: An Experimental Study Using a Gelatin-based Tissue Phantom,” Phys. Med. Biol., Vol.38, pp.1911-1922, 1993.
[32] Zuomin Zhao, “Pulsed Photoacoustic Techniques and Glucose Determination in Human Blood and Tissue,” Ph. D dissertation, University of Oulu, 2002.
[33] H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in Photoacoustic Noninvasive Glucose Testing,” Clinical Chemistry, Vol.45, No.9, pp.1587–1595, 1999.
[34] A. Roggan, M. Friebel, K. Dorschel, A. Hahn, G. Muller, “Optical Properties of Circulating Human Blood in the Wavelength Range 400-2500 nm,” Journal of Biomedical Optics, Vol.4, No.1, 1999.
[35] Roland N. Pittman, “In Vivo Photometric Analysis of Hemoglobin,” Annals of Biomedical Engineering, Vol.14, pp.119-137, 1986.
[36] SL Jacques, “Origins of tissue optical properties in the UVA, visible and NIR regions,” Advances in Optical Imaging and Photon Migration, Vol.2, pp.364-371, 1996.
[37] http://en.wikipedia.org/wiki/Systematic_error
[38] http://en.wikipedia.org/wiki/Random_error
[39] Clemens J, Peter J, Bruce R. K, “Error Propagation and Optimal Performance in Multicomponent Analysis,” Anal. Chem., Vol. 53, pp.85-92, 1981.
[40] William F. Walker and Gregg E. Trahey, “A Fundamental Limit on Delay Estimation Using Partially Correlated Speckle Signals.” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol.42, NO.2, 1995.
[41] Cheng-Lun Tsai, Ji-Chung Chen, Wen-Jwu Wang, “Near-infrared Absorption Property of Biological Soft Tissue Constituents,” Journal of Medical and Biological Engineering, Vol.21, No.1, pp.7-14, 2001.
[42] A. A. Karabutov, N. B. Podymova, V. S. Letokhov, “Time-resolved Laser Optoacoustic Tomography of Inhomogeneous Media,” Appl. Phys. B, Vol.63, pp 545–563, 1996.
[43] I. V. Larina, K.V. Larin and R. O. Esenaliev, “Real-time Optoacoustic Monitoring of Temperature in Tissues,” Journal of Physics D: Applied Physics, Vol.38, pp. 2633–2639, 2005.
[44] K. Maruo, M. Tsurugi, J. Chin, T. Ota, H. Arimoto, Y. Yamada, “Noninvasive Blood Glucose Assay Using a Newly Developed Near-Infrared System,” IEEE Journal of Selected Topics in Quantum Electronics, Vol.9, No.2, 2003.
[45] ANSI, Safe Use of Lasers, no. Z136.1(1993), American National Standards Institute, New York, USA, 1993.
[46] J. J. Burmeister, M. A. Arnold, “Evaluation of Measurement Sites for Noninvasive Blood Glucose Sensing with Near-Infrared Transmission Spectroscopy,” Clinical Chemistry, Vol.45, No.9, pp.1621–1627, 1999.
[47] T. J. Allen, P. C. Beard, “Dual Wavelength Laser Diode Excitation Source for 2D Photoacoustic Imaging,” Proc. of SPIE, Vol. 6437, 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40530-
dc.description.abstract本論文主要探討使用超音波聲速與光聲振幅變化量測葡萄糖濃度之可行性。對於糖尿病患而言,血糖量測是必要的檢測。目前最普遍的方法仍以侵入式的化學檢測法為主,而這會造成受測者傷口及痛苦。利用光聲效應最大的潛在優點為非侵入式及同時利用物質的光學特性以及聲學特性來判斷葡萄糖的濃度,本論文之研究目標即為探討此可行性。在光聲實驗架構方面,主要以Ti:sapphire作為雷射之光源,發出波長在940 nm的近紅外光照射葡萄糖溶液,並且用中心頻率為1 MHz,聚焦深度為1.27 cm之線聚焦超音波探頭以側向模式進行光聲波量測,並將所得訊號之振幅差異來分辨葡萄糖之濃度。為降低雷射輸出之變異所造成之影響,亦利用同步量測之雷射能量做修正。此結果顯示在光聲訊號的平均振幅方面,濃度每增加1%,平均振幅可上升2%,此與參考文獻數據相符合。光聲訊號振幅的標準差則大約是振幅的1.5%-2%,此誤差限制了實際應用之可行性。目前所知誤差來源包括系統內部所產生的熱雜訊,此經由訊號平均可有效降低;誤差來源也包括了雷射能量的變異,此則無法被完全去除。在聲速量測方面,使用中心頻率為20 MHz之探頭,在距離探頭下1公分處放置鐵板,量測脈衝回波。在距離為1公分之下,葡萄糖濃度每上升1%,飛行時間可下降約0.18%左右,而標準差大約是0.2 ns,其主要來自於jitter之影響。本研究目前結果仍以溶液實驗為主,此系統可分辨之濃度差為1%,而美國食品藥物管理局(FDA)則規定需能分辨濃度差為0.01%才可供人體使用,因此需要再降低標準差,並結合聲速參數去除受外界干擾之訊號。本研究也進行了血紅素溶液之初步實驗。在光聲訊號的平均振幅方面,葡萄糖濃度每上升1%,平均振幅會上升1.4%。在量測聲速方面,與純水溶液所得結果相似,聲速會隨葡萄糖濃度上升,而葡萄糖溶液濃度每上升1%,飛行時間下降約0.17%。In vivo的實驗將在未來進行,由於紅血球會造成光的散射,而且血漿中其他物質和葡萄糖吸收光譜重疊的問題,將不易產生良好的光聲訊號,因此可探討以多波長的方式來逐一消除其他物質的干擾及選擇適當量測部位來克服in vivo應用之相關問題。zh_TW
dc.description.abstractIn this research, glucose concentration measurements based on photoacoustic(PA) signal amplitude and acoustic velocity are studied. Determination of blood glucose level is a required procedure in diabetes care. Currently, the most common method involves collecting blood samples for chemical analysis, but it is invasive and prone to result in pain and skin injury. It is the purpose of this study to investigate the feasibility of non-invasive glucose measurements based on PA and ultrasonic measurements. The PA setup includes a source Ti:sapphire laser and a line-focused single-crystal ultrasound transducer operating at 1 MHz. The transducer was arranged perpendicular to the incident laser beam for sideward detection. Our experiment results reveal that the PA amplitude increases by about 2% when the glucose concentration increases by 1%, and the standard deviation is around 1.5% to 2%. The standard deviation results from thermal noise, which can be decreased by signal averaging and the instable laser output. On the other hand, sound velocity was estimated by pulse echo measurements. The experimental setup included an ultrasound transducer operating at 20 MHz, with the distance between the ultrasound transducer and a reflector being 1 cm. The experiment results show that the time of flight decreases by 0.18% when the glucose concentration increases by 1% and the standard deviation is around 0.2ns, which is mainly caused by jitter. In conclusion, our measurements show that a 1% concentration change is detectable. However, the FDA requires a 0.01% detectability. We have also performed preliminary experiments with hemoglobin solution. Results show that the PA amplitude increases by about 1.4% and the time of flight decreases by about 0.18% when the glucose concentration increases by 1%. Future works will focus on improving the method by using multiple-laser wavelength, and to study influence of blood constituents.en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:50:21Z (GMT). No. of bitstreams: 1
ntu-97-R95921043-1.pdf: 1848826 bytes, checksum: 7c3145b411d18e449b1b86426d2f8c17 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents摘要..........................................................................................................Ⅰ
Abstract................................................................................................. Ⅲ
目錄..........................................................................................................Ⅴ
圖目錄......................................................................................................Ⅶ
表目錄......................................................................................................Ⅹ
第一章 緒論............................................................................................1
1.1 研究動機....................................................................................1
1.1.1 糖尿病..............................................................................1
1.1.2 糖尿病判定......................................................................2
1.2 侵入式血糖量測........................................................................4
1.3 非侵入式血糖量測....................................................................4
1.3.1 GlucoWatch......................................................................4
1.3.2 光學量測..........................................................................5
1.3.3 螢光量測..........................................................................7
1.3.4 旋光量測..........................................................................8
1.3.5 阻抗量測..........................................................................9
1.3.6 非侵入式量測總結........................................................10
1.4 光聲效應簡介..........................................................................12
1.4.1 光聲效應........................................................................12
1.4.2 光聲效應目前之相關研究領域....................................13
1.4.3 光聲效應接收方式........................................................14
1.5 研究目標..................................................................................17
1.6 論文架構..................................................................................18
第二章 葡萄糖溶液光聲特性..............................................................19
2.1 葡萄糖溶液近紅外光吸收特性..............................................19
2.2 葡萄糖溶液熱學及聲學特性..................................................21
2.3 近紅外光波長產生之光聲訊號..............................................22
2.4 水溶液與組織液、血液之差異..............................................23
第三章 誤差理論基礎..........................................................................26
3.1 誤差傳播..................................................................................26
3.1.1 系統及隨機誤差............................................................26
3.1.2 誤差傳遞播定律............................................................27
3.2 The Cramer-Rao Lower Bound................................................29
第四章 實驗架構..................................................................................31
4.1 光聲振幅..................................................................................31
4.2 聲速..........................................................................................35
第五章 結果與分析..............................................................................38
5.1 光聲振幅-濃度變化.................................................................38
5.1.1 水溶液............................................................................38
5.1.2 硫酸銅溶液....................................................................42
5.2 聲速-濃度變化.........................................................................46
第六章 討論與結論..............................................................................48
6.1 雷射系統..................................................................................48
6.2 葡萄糖溶液..............................................................................51
6.3 訊號接收系統..........................................................................51
6.4 純水與硫酸銅之比較..............................................................53
6.5 溫度的影響..............................................................................55
6.6 聲速..........................................................................................57
6.7 結論..........................................................................................59
6.8 未來工作..................................................................................60
6.8.1 多波長雷射二極體發射系統........................................60
6.8.2 組織液、全血及in vivo實驗.........................................62
文獻回顧..................................................................................................69
dc.language.isozh-TW
dc.subject振幅zh_TW
dc.subject聲速zh_TW
dc.subject光聲效應zh_TW
dc.subject非侵入式量測zh_TW
dc.subject葡萄糖濃度zh_TW
dc.subjectglucose concentrationen
dc.subjectnoninvasiveen
dc.subjectphotoacousticen
dc.subjectamplitudeen
dc.subjectsound velocityen
dc.title使用光聲效應量測葡萄糖濃度之效能探討zh_TW
dc.titlePerformance Issues in Glucose Concentration Measurements Using Photoacousticsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江惠華(Hui-hua Chiang),李夢麟(Meng-Lin Li),宋孔彬(Kung-Bin Sung),羅履維(Leu-Wei Lo)
dc.subject.keyword光聲效應,非侵入式量測,葡萄糖濃度,振幅,聲速,zh_TW
dc.subject.keywordphotoacoustic,noninvasive,glucose concentration,amplitude,sound velocity,en
dc.relation.page72
dc.rights.note有償授權
dc.date.accepted2008-07-31
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved