Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40507Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 張所鋐(Shuo-Hung Chang) | |
| dc.contributor.author | I-Chun Chen | en |
| dc.contributor.author | 陳逸群 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:49:39Z | - |
| dc.date.available | 2008-08-06 | |
| dc.date.copyright | 2008-08-06 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-30 | |
| dc.identifier.citation | [1] T. Kobori, M.Takahahi, T.Nasu, N.Niwa, and K.Ogasawara, “Seismic Response Controlled Structure with Active Variable Stiffness System, “Earthquake Engineering and Structural Dynamic, Vol.22, No.11, pp925-41.
[2] M.A. Barton, N.Kanda, and Kuroda.k, “Low-Frequency Vibration Isolation Table Using Multiple Crossed-Wire Suspensions,” Review of Scientific Instruments, 67(11), pp.3394. [3] D.L Platus, “Negative-Stiffness-Mechanism Vibration Isolation Systems,”Proceeding of SPIE-The International Society for Optical Engineering and Vibration Control, 3786, pp. 98-105, Jul20-Jul23, 1999. [4] Mace, B.R., “Active Control of Flexural Vibrations”, Journal of Sound and Vibration, 114(2), pp.253-270, 1987. [5] Fanson, J.L. and Caughey, T.k., “Positive Position Feedback Control for Large Space Structures,” AIAA Journal, 28(4), pp.717-724, 1990. [6] Matsuno, F., Senda, H., Ishibe, T. and Sakawa, Y., “Vibration Control of a Flexible Plate,” ASME, Dynamic Systems and Control Division (Publication) DSC, Modeling and Control of Complaint and Rigid Motion Systems, 31, pp.7-15, 1991. [7] Palazzolo, A.B., Lin, R.R., Kascak, A.F., Montague, J. and Alexander, R.M.,“Test and Theory for Piezoelectric Actuator-Active Vibration Control of Rotating Machinery.” Journal of Vibration, Acoustics Stress, and Reliability in Design, 113(2), pp.167-75, 1991. [8] Dosch, J.J., Inman, D.J and Garcis., E., “Self-Sensing Piezoelectric Actuator for Collocated Control, ”Journal of Intelligent Material Systems and Structures., 3(1),pp.166-85, 1992. [9] Baz, A., Poh, S. and Fedor, J., “Independent Modal Space Control with Positive Position Feedback,” Transactions of the ASME, Journal of Dynamic System, Measure and Control, 114(97), pp.96-103, 1992. [10] Ofri, A., Tanchum, W., and Guterman, H., “Active Control for Large Space Structure by Fuzzy Logic Controller,” IEEE, Electrical and Electronics Engineers in Israel, pp.515-18, 1996. [11] Barr, A.J and Ray, J.L., “Control of an Active Suspension Using Fuzzy Logic,”IEEE, Fuzzy Systems, 1, pp.42-48, 1996. [12] Chen, L.H and Huanf, S.C., “Dynamic and Control of Active and Passive Constrained Layer Damping Treatments on a Cylindrical Shell,” Journal of the Chinese Society of Mechanical Engineer, 20(4), pp.385-97, 1999. [13] 孔繁蕙,壓電陶瓷應用不同控制法則對樑振動抑制之效應分析,國立台灣科技大學機械工程研究所碩士論文(1999)。 [14] Abreu, G.L.C.M. and Ribeiro, J.F., “Active Control of Flexible Structure Using Adaptive Fuzzy Controllers and Piezoelectric Patches,” IEEE, ISFA World Congress and 20th NAFIPS International Conference. pp. 1764-1769, 2001. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40507 | - |
| dc.description.abstract | 在精密製造與工業上,振動對於生產機械及量測儀器的精度有很大的影響,尤其當科技進入了奈米時代,對於地面所傳遞的微小振動都必須列入考慮,也因此如何將振動從生產或是量測過程中消除,經常是研究人員重視的問題。常見的隔振系統均屬於被動式機構,具有高穩定性及低成本等優點,但是對於動態變化大的外界振動干擾,被動式機構的隔振效果有其限制。拜積體電路與電力電子技術的發展所賜,振動控制由以前的被動式機制轉為主動式機制,主動式的振動控制意謂利用感測器量測實體的振動量,經由回授控制器計算後,輸出指令驅動制動器產生適當推力或轉矩,幫助受控體反抗干擾或加速穩定,達到預設的控制性能。
此篇論文旨在研究模擬變動負載對於主動式避震系統的暫態性能與穩態性能的影響。在文中以雷射干涉儀做為感測器,利用音圈馬達作為致動器來設計避振系統,在系統識別方面採用HP35665A 動態訊號分析儀來建構數學模型。本研究使用滑動模式控制器(SMC)、內部模式控制器(IMP)與PID 控制器來補償干擾平台所產生的外界干擾,利用Matlab 軟體中Simulink 來模擬其結果。在文中以模擬 的方式討論變更質量對於控制性能的影響。 | zh_TW |
| dc.description.abstract | In the field of precision manufacture, vibration is influential in mechanical productions and instrumental measurements. Consequently, how to attenuate vibrations
from the process of production and measurement is one of the main concerns of the research. Conventional vibration attenuation mechanisms are passive mechanisms, which are excellent in reducing cost and providing high stability. However, passive mechanisms are limited in reduction performances when facing rapidly-changed disturbances. Thanks to IC technology, traditional passive mechanisms transform into the active one. Active mechanisms measure plants in the first place then generate thrusts or torques in accordance with its feedback data. With those thrusts and torques, they help plants to remain stable or to reduce disturbances in order to achieve better performances. This study discusses the impacts of different loadings on transient performances as well as steady performances of active mechanisms. In our system, we apply laser interferometer as a sensor and VCM as an actuator. As to system identification, we adapt HP35665A dynamic signal analyzer as our model. We use SMC, IMP as well as PID controller to compensate outer disturbances and stimulate the possible result by using Simulink (Matlab). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:49:39Z (GMT). No. of bitstreams: 1 ntu-97-R95522830-1.pdf: 2300899 bytes, checksum: 8c5009d41dfdf333a354fe14c23ac6a5 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 第一章 序論........................................1
1.1 前言...........................................1 1.2 研究背景.......................................1 1.2.1 避振機構.....................................1 1.2.2 控制器文獻回顧...............................3 1.3 研究目的.......................................4 1.4 文章架構.......................................5 第二章 系統架構與分析..............................6 2.1 系統組成.......................................6 2.2 控制系統迴路...................................8 2.3 系統介紹.......................................9 2.3.1 音圈馬達.....................................9 2.3.2 雷射干涉儀..................................10 2.3.3 電壓放大器..................................11 2.3.4 頻譜分析儀..................................12 2.3.5 示波器......................................12 2.4 系統鑑別......................................13 第三章 控制器設計.................................19 3.1 SMC 控制器....................................19 3.2 IMP.......................................... 24 3.3 PID 控制器....................................28 第四章 實驗結果及討論.............................36 4.1.3 PID 控制器之抑振............................43 4.2.1 質量增加10%~50%對採T=0.01 之控制器的影響....46 4.2.2 質量增加10%~50%對T=0.001 之控制器的影響.....54 4.2.3 質量變化對採樣時間0.0001 之控制器的影響.....63 第五章 結論與未來展望.............................71 5.1 結論..........................................71 5.2 未來展望......................................72 參考文獻..........................................73 | |
| dc.language.iso | zh-TW | |
| dc.subject | PID | zh_TW |
| dc.subject | 音圈馬達 | zh_TW |
| dc.subject | 主動振動抑制 | zh_TW |
| dc.subject | SMC | zh_TW |
| dc.subject | IMP | zh_TW |
| dc.subject | VCM | en |
| dc.subject | IMP | en |
| dc.subject | SMC | en |
| dc.subject | Active vibration isolation | en |
| dc.subject | PID | en |
| dc.title | 不同控制器應用於主動式避振系統之強韌性 | zh_TW |
| dc.title | The Robust of Various controllers for Active Vibration Suppression Mechanism | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊燿州(Yao-Joe Joseph Yang),施文彬(Wen-Pin Shih) | |
| dc.subject.keyword | 音圈馬達,主動振動抑制,SMC,IMP,PID, | zh_TW |
| dc.subject.keyword | VCM,Active vibration isolation,SMC,IMP,PID, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| Appears in Collections: | 機械工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-97-1.pdf Restricted Access | 2.25 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
