Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40505
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅立成
dc.contributor.authorWan-Lin Huen
dc.contributor.author胡琬琳zh_TW
dc.date.accessioned2021-06-14T16:49:35Z-
dc.date.available2010-08-05
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-31
dc.identifier.citation[1] V. Parpura. Three-dimensional imaging of living neurons and glia with the atomic force microscope. Journal of Cell Science, 104(2):427-432, 1993.
[2] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel. Surface studies by scanning tunneling microscopy. Physical Review Letters, 49(1):57-61, 1982.
[3] G. Binnig, C. F. Quate, and C. Gerber. Atomic force microscope. Physical Review Letters, 56(9):930-933, 1986.
[4] D. W. Pohl, W. Denk, and M. Lanz. Optical stethoscopy: Image recording with resolution λ/20. Applied Physics Letters, 44:651, 1984.
[5] C. C. Williams and H. K. Wickramasinghe. Scanning thermal profiler. Applied Physics Letters, 49:1587, 1986.
[6] Y. Martin, C. C. Williams, and H. K. Wickramasinghe. Atomic force microscope-force mapping and profiling on a sub 100-Å scale. Journal of Applied Physics, 61:4723, 1987.
[7] Y. Martin and H. K. Wickramasinghe. Magnetic imaging by force microscopy-
with 1000 Å resolution. Applied Physics Letters, 50:1455, 1987.
[8] C. M. Mate, G. M. McClelland, R. Erlandsson, and S. Chiang. Atomic-scale friction of a tungsten tip on a graphite surface. Physical Review Letters, 59(17):1942-1945, 1987.
[9] Y. Martin, D. W. Abraham, and H. K. Wickramasinghe. High-resolution capacitance measurement and potentiometry by force microscopy. Applied Physics Letters, 52:1103, 1988.
[10] C. C. Williams, J. Slinkman, W. P. Hough, and H. K. Wickramasinghe. Lateral dopant profiling with 200 nm resolution by scanning capacitance microscopy. Applied Physics Letters, 55:1662, 1989.
[11] P. Maivald, H. J. Butt, S. A. C. Gould, C. B. Prater, B. Drake, J. A. Gurley, V. B. Elings, and P. K. Hansma. Using force modulation to image surface elasticities with the atomic force microscope. Nanotechnology, 2:103-106, 1991.
[12] S. Salapaka, A. Sebastian, J. P. Cleveland, and M. V. Salapaka. High bandwidth nano-positioner: A robust control approach. Review of Scientific Instruments, 73:3232, 2002.
[13] G. Meyer and N. M. Amer. Novel optical approach to atomic force microscopy.
Applied Physics Letters, 53:1045-1047, 1988.
[14] D. Rugar, H. J. Mamin, and P. Guethner. Improved fiber-optic interferometer for atomic force microscopy. Applied Physics Letters, 55:2588-2590, 1989.
[15] N. Blanc, J. Brugger, N. F. d. Rooij, and U. Durig. Scanning force microscopy in the dynamic mode using microfabricated capacitive sensors. Journal of Vacuum Science and Technology B, 14:901-905, 1996.
[16] M. Tortonese, R. C. Barrett, and C. F. Quate. Atomic resolution with an atomic force microscope using piezoresistive detection. Applied Physics Letters, 62:834-836, 1993.
[17] T. Akiyama, U. Staufer, and N. F. Rooij. Self-sensing and self-actuating probe based on quartz tuning fork combined with microfabricated cantilever for dynamic mode atomic force microscopy. Applied Surface Science, 210:18-21, 2003.
[18] P. L. Yen, W. I. Hsiao, and T. S. Lu. Developing a new low-cost XY table using optical pickup head with adaptive controller. Proceedings of the 2004 IEEE International Conference on Control Applications, 1:117-122, 2004.
[19] T. R. Armstrong and M. P. Fitzgerald. An autocollimator based on the laser head of a compact disc player. Measurement Science and Technology, 3:1072-1076, 1992.
[20] K. C. Fan, C. Y. Lin, and L. H. Shyu. The development of a low-cost focusing probe for profile measurement. Measurement Science and Technology, 11:N1-N7, 2000.
[21] A. Bartoli, P. Poggi, F. Quercioli, and B. Tiribilli. Fast one-dimensional profilometer with a compact disc pickup. Applied Optics, 40:1044-1048, 2001.
[22] K. Y. Huang, E. T. Hwu, H. Y. Chow, and S. K. Hung. Development of an optical pickup system for measuring the displacement of the micro cantilever in scanning probe microscope. IEEE International Conference on Mechatronics, pages 695-698, 2005.
[23] F. Quercioli, B. Tiribilli, C. Ascoli, P. Baschieri, and C. Frediani. Monitoring of an atomic force microscope cantilever with a compact disk pickup. Review of Scientific Instruments, 70:3620-3624, 1999.
[24] E. T. Hwu, K. Y. Huang S. K. Hung, and I. S. Hwang. Measurement of cantilever displacement using a compact disk/digital versatile disk pickup head. International Conference on Scanning Tunneling Microscopy/Spectroscopy and Related Techniques, pages 2368-2371, 2005.
[25] E. T. Hwu, S. K. Hung, C. W. Yang, I. S. Hwang, and K. Y. Huang. Simultaneous detection of translational and angular displacements of micromachined elements. Applied Physics Letters, 91:221908, 2007.
[26] E. T. Hwu, S. K. Hung, C. W. Yang, K. Y. Huang, and I. S. Hwang. Real-time detection of linear and angular displacements with a modified DVD optical head. Nanotechnology, 19(115501):115501, 2008.
[27] B. Cappella and G. Dietler. Force-distance curves by atomic force microscopy. Surface Science Reports, 34:1-104, 1999.
[28] J.N. Israelachvili. Intermolecular and Surface Forces. Academic Press, 1985.
[29] S. Ciraci, E. Tekman, A. Baratoff, and I.P. Batra. Theoretical study of short- and long-range forces and atom transfer in scanning force microscopy. Physical Review B, 46(16):10411-10422, 1992.
[30] B. V. Derjaguin, V. M. Muller, and Y. P. Toporov. Effect of contact deformation on the adhesion of elastic solids. Journal of colloid and interface science, 53:314-326, 1975.
[31] P. J. Chen and S. T. Montgomery. A macroscopic theory for the existence of the hysteresis and butterfly loops in ferroelectricity. Ferroelectrics, 23(1):199-207, 1980.
[32] K. Furutani, M. Urushibata, and N. Mohri. Improvement of control method for piezoelectric actuator by combining induced charge feedback with inverse transfer function compensation. Proceedings of the 1998 IEEE international Conference on Robotics & Automation Leuven, Belgium., 2:1504-1509, 1998.
[33] B. M. Chen, T. H. Lee, C. C. Hang, Y. Guo, and S. Weerasooriya. An H∞ almost disturbance decoupling robust controller design for a piezoelectric bimorph actuator with hysteresis. IEEE Transactions on Control Systems Technology, 7(2):160-174, 1999.
[34] M. Goldfarb and N. Celanovic. Behavioral implications of piezoelectric stack actuators for control of micromanipulation. Proceedings of the 1996 IEEE International Conference on Robotics and Automation, 1:226-231, 1996.
[35] K. K. Leang and S. Devasia. Iterative feedforward compensation of hysteresis in piezo positioners. Proceedings of the 42nd IEEE Conference on Decision and Control, 3:2626-2631, 2003.
[36] K. Takahashi, K. Tateishi, Y. Tomita, and S. Ohsawa. Application of the sliding-mode controller to optical disk drives. Japanese Journal of Applied Physics, 43(no. 7 b):4801-4805, 2004.
[37] I. Blog. A robust MRAC using variable structure design for multivariable plants. Automatica, 32(6):833-848, 1996.
[38] C. L. Hwang, Y. M. Chen, and C. Jan. Trajectory tracking of large-displacement piezoelectric actuators using a nonlinear observer-based variable structure control. IEEE Transactions on Control Systems Technology, 13(1):56-66, 2005.
[39] P. Krejci, K. Kuhnen, and B. WIAS. Inverse control of systems with hysteresis and creep. IEEE Proceedings on Control Theory and Applications, 148(3):185-192, 2001.
[40] D. Croft, G. Shed, and S. Devasia. Creep, hysteresis, and vibration compensation for piezoactuators: Atomic force microscopy application. Journal of Dynamic Systems, Measurement, and Control, 123:35, 2001.
[41] Q. Zhong, D. Inniss, K. Kjoller, and V. B. Elings. Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surface science, 290(1-2):688-692, 1993.
[42] J. Tamayo and R. Garcia. Deformation, contact time, and phase contrast in tapping mode scanning force microscopy. Langmuir, 12:4430-4435, 1996.
[43] M. Marth, D. Maier, J. Honerkamp, R. Brandsch, and G. Bar. A unifying view on some experimental effects in tapping-mode atomic force microscopy. Journal of Applied Physics, 85:7030, 1999.
[44] P. K. Hansma, J. P. Cleveland, M. Radmacher, D. A. Walters, P. E. Hillner, M. Bezanilla, M. Fritz, D. Vie, H. G. Hansma, and C. B. Prater. Tapping mode atomic force microscopy in liquids. Applied Physics Letters, 64:1738, 1994.
[45] C. A. J. Putman, K. O. Van der Werf, B. G. De Grooth, N. F. Van Hulst, and J. Greve. Tapping mode atomic force microscopy in liquid. Applied Physics Letters, 64:2454, 1994.
[46] R. Garcia and A. San Paulo. Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy. Physical Review B, 60(7):4961-4967, 1999.
[47] R. Garcia and A. San Paulo. Dynamics of a vibrating tip near or in intermittent contact with a surface. Physical Review B, 61(20):13381-13384, 2000.
[48] U. Rabe, J. Turner, and W. Arnold. Analysis of the high-frequency response of atomic force microscope cantilevers. Applied Physics A: Materials Science & Processing, 66:277-282, 1998.
[49] MV Salapaka, DJ Chen, and JP Cleveland. Linearity of amplitude and phase in tapping-mode atomic force microscopy. Physical Review B, 61(2):1106-1115, 2000.
[50] A.S. Paulo and R. Garcia. Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy. Physical Review B, 64(19):193411, 2001.
[51] H. Goldstein. Classical mechanics (2nd ed.), 1980.
[52] JP Cleveland, B. Anczykowski, AE Schmid, and VB Elings. Energy dissipation in tapping-mode atomic force microscopy. Applied Physics Letters, 72:2613, 1998.
[53] J. Tamayo and R. Garcia. Relationship between phase shift and energy dissipation in tapping-mode scanning force microscopy. Applied Physics Letters, 73:2926, 1998.
[54] A. J. Fleming and S. O. R. Moheimani. Sensorless vibration suppression and scan compensation for piezoelectric tube nanopositioners. IEEE Transactions on Control Systems Technology, 14(1):33-44, 2006.
[55] S. K. Hung. Design and Control of Novel Atomic Force Microscope Systems. PhD thesis, National Taiwan University, 2007.
[56] S. Tien, Q. Zou, and S. Devasia. Iterative control of dynamics-coupling effects in piezo-based nano-positioners for high-speed AFM. Proceedings of the 2004 IEEE International Conference on Control Applications, 1:711-717, 2004.
[57] A. Sebastian, MV Salapaka, and JP Cleveland. Robust control approach to atomic force microscopy. Proceedings of the 42nd IEEE Conference on Decision and Control, 4:3443-3444, 2003.
[58] G. Schitter, P. Menold, HF Knapp, F. AllgÄower, and A. Stemmer. High performance feedback for fast scanning atomic force microscopes. Review of Scientific Instruments, 72:3320-3327, 2001.
[59] G. Schitter, A. Stemmer, and F. Allgower. Robust 2 DOF-control of a piezoelectric tube scanner for high speed atomic force microscopy. Proceedings of the 2003 American Control Conference, 5:3720-3725, 2003.
[60] Y.C. Chang. A robust tracking control for chaotic Chua's circuits via fuzzy approach. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(7):889-895, 2001.
[61] K.S. Kim and Y. Kim. Robust backstepping control for slew maneuver using nonlinear tracking function. IEEE Transactions on Control Systems Technology, 11(6):822-829, 2003.
[62] C.J. Chien, K.C. Sun, A.C. Wu, and L.C. Fu. A robust MRAC using variable structure design for multivariable plants. Automatica, 32:833-848, 1996.
[63] T. Fukuma, K. Kobayashi, K. Matsushige, and H. Yamada. True atomic resolution in liquid by frequency-modulation atomic force microscopy. Applied Physics Letters, 87:034101, 2005.
[64] S. Gao, L. Chi, S. Lenhert, B. Anczykowski, C.M. Niemeyer, M. Adler, and H. Fuchs. High-quality mapping of DNA-protein complexes by dynamic scanning force microscopy. ChemPhysChem, 2(6):384-388, 2001.
[65] D. Ebeling, H. Holscher, H. Fuchs, B. Anczykowski, and UD Schwarz. Imaging of biomaterials in liquids: a comparison between conventional and Q-controlled amplitude modulation (tapping mode) atomic force microscopy. Nanotechnology, 17(7):S221-S226, 2006.
[66] L. Zitzler, S. Herminghaus, and F. Mugele. Capillary forces in tapping mode atomic force microscopy. Physical Review B, 66(15):155436, 2002.
[67] R. W. Stark, G. Schitter, and A. Stemmer. Tuning the interaction forces in tapping mode atomic force microscopy. Physical Review B, 68(8):85401, 2003.
[68] H. Holscher, D. Ebeling, and U. D. Schwarz. Theory of Q-controlled dynamic force microscopy in air. Journal of Applied Physics, 99:084311, 2006.
[69] T. R. Rodriguez and R. Garcia. Theory of Q control in atomic force microscopy. Applied Physics Letters, 82:4821, 2003.
[70] P. A. Ioannou and J. Sun. Robust Adaptive Control. Prentica Hall, 1998.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40505-
dc.description.abstractIn this thesis, we propose a fluid tapping mode atomic force microscopy (AFM) implemented by a DVD pickup head. The use of DVD pickup head replaces the quadrant photodiode and complex light path system of traditional optical-lever technique and minimizes the volume of the measuring system. In addition, a piezoelectric tube is used as a scanner which can perform three-dimensional motion. Both achievements make the AFM system more compact. Therefore, the measurement error caused by heat expansion will be reduced. Through adjusting the light path system and applying the controller, we can correctly measure the displacement of the probe in vertical direction in different condition.
In order to realize the system mentioned above, we design a Q controller to modulate the interaction force between the tip and the sample. Increasing the quality factor will overcome the problem caused by high damping ratio in the fluid which makes the probe hard to oscillate. Because of the tip-sample force reduction, the sample surface will not be hurt by the tip. Therefore, we can use the AFM to scan soft samples, and obtain more realistic topography. Traditionally, people use proportion-integration controllers to control the system. Users need to tune this kind of controller manually, and hence the quality of scan images is highly related to users' experiences. To overcome this problem, we design an adaptive sliding-mode controller to improve the scanning capability and robustness. For testing the system capability, we have conducted a series of experiments.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:49:35Z (GMT). No. of bitstreams: 1
ntu-97-R95921008-1.pdf: 5294771 bytes, checksum: beff72369b20de065304e593bad14d17 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsAcknowledgements i
Chinese Abstract iii
Abstract v
1 Introduction 1
1.1 Motivation and Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 AFM Survey and Related Work . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 Preliminaries 15
2.1 Basic Theories of Interaction Force . . . . . . . . . . . . . . . . . . . 15
2.1.1 Van der Waals Interaction Principle . . . . . . . . . . . . . . . 16
2.1.2 Derjaguin{Muller{Toporov theory . . . . . . . . . . . . . . . . 23
2.2 Basic Principles of Piezoelectricity . . . . . . . . . . . . . . . . . . . . 24
2.2.1 Hysteresis Phenomenon . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Creep Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.3 Tube Scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Basic Principles of CD/DVD Pickup Head . . . . . . . . . . . . . . . 31
2.3.1 Sensing Methodology . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.2 Focusing and Tracking Actuators . . . . . . . . . . . . . . . . 34
2.4 Operation Principle of AFM . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.1 Contact Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.2 Tapping Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3 System Design 41
3.1 Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4 Modeling and System Identi‾cation 53
4.1 Tip-Sample Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Piezoelectric Actuator . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5 Controller Design 65
5.1 Q-Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Adaptive Sliding-Mode Controller Design . . . . . . . . . . . . . . . . 72
5.2.1 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6 Experiment 83
6.1 Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Experimental Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2.1 System Characteristics . . . . . . . . . . . . . . . . . . . . . . 89
6.2.2 Scanning Result of the Calibration Grating . . . . . . . . . . . 90
7 Conclusions 97
dc.language.isoen
dc.title以光學讀取頭系統實現之輕敲式液相原子力顯微鏡設計與控制zh_TW
dc.titleDesign and Control of Tapping Mode Atomic Force Microscope in Liquid Utilizing Optical Pickup Systemen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡竹生,羅仁權,蔡坤諭,羅竹芳
dc.subject.keyword輕敲式原子力顯微鏡,Q控制器,適應控制器,滑動模式控制器,zh_TW
dc.subject.keywordAFM,tapping mode,Q-control,adaptive sliding-mode control,en
dc.relation.page109
dc.rights.note有償授權
dc.date.accepted2008-07-31
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
5.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved