Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40498
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張麗冠
dc.contributor.authorShu-Han Yangen
dc.contributor.author楊舒涵zh_TW
dc.date.accessioned2021-06-14T16:49:23Z-
dc.date.available2016-08-17
dc.date.copyright2011-08-17
dc.date.issued2011
dc.date.submitted2011-08-12
dc.identifier.citation1. Alhashem, Y., Vinjamur, D., Basu, M., Klingmueller, U., Gaensler, K.M., and Lloyd, J.A. (2011). Transcription factors KLF1 and KLF2 positively regulate embryonic and fetal {beta}-globin genes through direct promoter binding. J Biol Chem.
2. Armstrong, J.A., Bieker, J.J., and Emerson, B.M. (1998). A SWI/SNF-related chromatin remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro. Cell 95, 93-104.
3. Asano, H., Li, X.S., and Stamatoyannopoulos, G. (1999). FKLF, a novel Kruppel-like factor that activates human embryonic and fetal beta-like globin genes. Mol Cell Biol 19, 3571-3579.
4. Asano, H., Li, X.S., and Stamatoyannopoulos, G. (2000). FKLF-2: a novel Kruppel-like transcriptional factor that activates globin and other erythroid lineage genes. Blood 95, 3578-3584.
5. Bernstein, E., Caudy, A.A., Hammond, S.M., and Hannon, G.J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363-366.
6. Bieker, J.J. (2001). Kruppel-like factors: three fingers in many pies. J Biol Chem 276, 34355-34358.
7. Birsoy, K., Chen, Z., and Friedman, J. (2008). Transcriptional regulation of adipogenesis by KLF4. Cell Metab 7, 339-347.
8. Brey, C.W., Nelder, M.P., Hailemariam, T., Gaugler, R., and Hashmi, S. (2009). Kruppel-like family of transcription factors: an emerging new frontier in fat biology. Int J Biol Sci 5, 622-636.
9. Caiazzo, M., Colucci-D'Amato, L., Volpicelli, F., Speranza, L., Petrone, C., Pastore, L., Stifani, S., Ramirez, F., Bellenchi, G.C., and di Porzio, U. (2011). Kruppel-like factor 7 is required for olfactory bulb dopaminergic neuron development. Exp Cell Res 317, 464-473.
10. Chang, L.K., Chung, J.Y., Hong, Y.R., Ichimura, T., Nakao, M., and Liu, S.T. (2005). Activation of Sp1-mediated transcription by Rta of Epstein-Barr virus via an interaction with MCAF1. Nucleic Acids Res 33, 6528-6539.
11. Chang, L.K., Huang, P.H., Shen, W.T., Yang, S.H., Liu, W.J., Lo, C.F. (2011). Role of Penaeus monodon Kruppel-like factor (PmKLF) in infection by white spot syndrome virus. Dev and Comp Immunol, Jun 28. [Epub ahead of print]
12. Chen, L.L., Lo, C.F., Chiu, Y.L., Chang, C.F., and Kou, G.H. (2000). Natural and experimental infection of white spot syndrome virus (WSSV) in benthic larvae of mud crab Scylla serrata. Dis Aquat Organ 40, 157-161.
13. Chen, W.Y., Ho, K.C., Leu, J.H., Liu, K.F., Wang, H.C., Kou, G.H., and Lo, C.F. (2008). WSSV infection activates STAT in shrimp. Dev Comp Immunol 32, 1142-1150.
14. Chen, Z., Lei, T., Chen, X., Zhang, J., Yu, A., Long, Q., Long, H., Jin, D., Gan, L., and Yang, Z. (2010). Porcine KLF gene family: Structure, mapping, and phylogenetic analysis. Genomics 95, 111-119.
15. Chou, H.Y., Huang, C.Y., Wang, C.H., Chiang, H.C., and Lo, C.F. (1995). Pathogenicity of a baculovirus infection causing white spot syndrome in cultured penaeid shrimp in Taiwan. Dis Aquat Organ 23, 165-173.
16. Cook, T., Gebelein, B., Belal, M., Mesa, K., and Urrutia, R. (1999). Three conserved transcriptional repressor domains are a defining feature of the TIEG subfamily of Sp1-like zinc finger proteins. J Biol Chem 274, 29500-29504.
17. Cook, T., and Urrutia, R. (2000). TIEG proteins join the Smads as TGF-beta-regulated transcription factors that control pancreatic cell growth. Am J Physiol Gastrointest Liver Physiol 278, G513-521.
18. Dang, D.T., Pevsner, J., and Yang, V.W. (2000). The biology of the mammalian Kruppel-like family of transcription factors. Int J Biochem Cell Biol 32, 1103-1121.
19. de Wet, J.R., Wood, K.V., DeLuca, M., Helinski, D.R., and Subramani, S. (1987). Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol 7, 725-737.
20. Dennig, J., Beato, M., and Suske, G. (1996). An inhibitor domain in Sp3 regulates its glutamine-rich activation domains. EMBO J 15, 5659-5667.
21. Durand, S., Lightner, D.V., Redman, R.M., and Bonami, J.-R. (1997). Ultrastructure and morphogenesis of white spot syndrome baculovirus (WSSV). Diseases of Aquatic Organisms 29, 205-211.
22. Fisch, S., Gray, S., Heymans, S., Haldar, S.M., Wang, B., Pfister, O., Cui, L., Kumar, A., Lin, Z., Sen-Banerjee, S., et al. (2007). Kruppel-like factor 15 is a regulator of cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 104, 7074-7079.
23. Flegel, T.W. (1997). Special topic review: major viral diseases of black tiger prawn (Penaeus monodon) in Thailand. World J Microbiol Biotechnol 13, 433-442.
24. Friedman, A., and Perrimon, N. (2004). Genome-wide high-throughput screens in functional genomics. Curr Opin Genet Dev 14, 470-476.
25. Friesen, P.D., and Miller, L.K. (1986). The regulation of baculovirus gene expression. Curr Top Microbiol Immunol 131, 31-49.
26. Geiman, D.E., Ton-That, H., Johnson, J.M., and Yang, V.W. (2000). Transactivation and growth suppression by the gut-enriched Kruppel-like factor (Kruppel-like factor 4) are dependent on acidic amino acid residues and protein-protein interaction. Nucleic Acids Res 28, 1106-1113.
27. Gidoni, D., Kadonaga, J.T., Barrera-Saldana, H., Takahashi, K., Chambon, P., and Tjian, R. (1985). Bidirectional SV40 transcription mediated by tandem Sp1 binding interactions. Science 230, 511-517.
28. Giglioni, B., Comi, P., Ronchi, A., Mantovani, R., and Ottolenghi, S. (1989). The same nuclear proteins bind the proximal CACCC box of the human beta-globin promoter and a similar sequence in the enhancer. Biochem Biophys Res Commun 164, 149-155.
29. Hammond, S.M., Bernstein, E., Beach, D., and Hannon, G.J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293-296.
30. Hammond, S.M., Caudy, A.A., and Hannon, G.J. (2001). Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet 2, 110-119.
31. Harrison, S.M., Houzelstein, D., Dunwoodie, S.L., and Beddington, R.S. (2000). Sp5, a new member of the Sp1 family, is dynamically expressed during development and genetically interacts with Brachyury. Dev Biol 227, 358-372.
32. He, F., and Kwang, J. (2008). Identification and characterization of a new E3 ubiquitin ligase in white spot syndrome virus involved in virus latency. Virol J 5, 151.
33. Hergovich, A., Stegert, M.R., Schmitz, D., and Hemmings, B.A. (2006). NDR kinases regulate essential cell processes from yeast to humans. Nat Rev Mol Cell Biol 7, 253-264.
34. Honess, R.W., and Roizman, B. (1974). Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol 14, 8-19.
35. Huang, X.D., Zhao, L., Zhang, H.Q., Xu, X.P., Jia, X.T., Chen, Y.H., Wang, P.H., Weng, S.P., Yu, X.Q., Yin, Z.X., et al. (2010). Shrimp NF-kappaB binds to the immediate-early gene ie1 promoter of white spot syndrome virus and upregulates its activity. Virology 406, 176-180.
36. Hunter, T. (2007). The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell 28, 730-738.
37. Imhof, A., Schuierer, M., Werner, O., Moser, M., Roth, C., Bauer, R., and Buettner, R. (1999). Transcriptional regulation of the AP-2alpha promoter by BTEB-1 and AP-2rep, a novel wt-1/egr-related zinc finger repressor. Mol Cell Biol 19, 194-204.
38. Inouye, K., Miwa, S., Oseko, N., Nakano, H., Kimura, T., Momoyama, K., and Hiraoka, M. (1994). Mass mortalities of cultured kuruma shrimp Penaeus japonicus in Japan in 1993: electron microscopic evidence of the causative virus. Fish Pathol 29, 149-158.
39. Jenkins, T.D., Opitz, O.G., Okano, J., and Rustgi, A.K. (1998). Transactivation of the human keratin 4 and Epstein-Barr virus ED-L2 promoters by gut-enriched Kruppel-like factor. J Biol Chem 273, 10747-10754.
40. Jiravanichpaisal, P., Bangyeekhun, E., Soderhall, K., and Soderhall, I. (2001). Experimental infection of white spot syndrome virus in freshwater crayfish Pacifastacus leniusculus. Dis Aquat Organ 47, 151-157.
41. Kaczynski, J., Cook, T., and Urrutia, R. (2003). Sp1- and Kruppel-like transcription factors. Genome Biol 4, 206.
42. Kasornchandra J, B.S., Itami T (1998). Detection of white-spot syndrome in cultured penaeid shrimp in Asia: Microscopic observation and polymerase chain reaction. Aquaculture 164, 243-251.
43. Khadijah, S., Neo, S.Y., Hossain, M.S., Miller, L.D., Mathavan, S., and Kwang, J. (2003). Identification of white spot syndrome virus latency-related genes in specific-pathogen-free shrimps by use of a microarray. J Virol 77, 10162-10167.
44. Khalil, M.I., Hay, J., and Ruyechan, W.T. (2008). Cellular transcription factors Sp1 and Sp3 suppress varicella-zoster virus origin-dependent DNA replication. J Virol 82, 11723-11733.
45. Kim, Y., Ratziu, V., Choi, S.G., Lalazar, A., Theiss, G., Dang, Q., Kim, S.J., and Friedman, S.L. (1998). Transcriptional activation of transforming growth factor beta1 and its receptors by the Kruppel-like factor Zf9/core promoter-binding protein and Sp1. Potential mechanisms for autocrine fibrogenesis in response to injury. J Biol Chem 273, 33750-33758.
46. Kuo, C.T., Veselits, M.L., Barton, K.P., Lu, M.M., Clendenin, C., and Leiden, J.M. (1997). The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev 11, 2996-3006.
47. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948.
48. Laub, F., Aldabe, R., Friedrich, V., Jr., Ohnishi, S., Yoshida, T., and Ramirez, F. (2001). Developmental expression of mouse Kruppel-like transcription factor KLF7 suggests a potential role in neurogenesis. Dev Biol 233, 305-318.
49. Laub, F., Lei, L., Sumiyoshi, H., Kajimura, D., Dragomir, C., Smaldone, S., Puche, A.C., Petros, T.J., Mason, C., Parada, L.F., et al. (2005). Transcription factor KLF7 is important for neuronal morphogenesis in selected regions of the nervous system. Mol Cell Biol 25, 5699-5711.
50. Lee, C.H., Murphy, M.R., Lee, J.S., and Chung, J.H. (1999). Targeting a SWI/SNF-related chromatin remodeling complex to the beta-globin promoter in erythroid cells. Proc Natl Acad Sci U S A 96, 12311-12315.
51. Lei, L., Ma, L., Nef, S., Thai, T., and Parada, L.F. (2001). mKlf7, a potential transcriptional regulator of TrkA nerve growth factor receptor expression in sensory and sympathetic neurons. Development 128, 1147-1158.
52. Li, F., Li, M., Ke, W., Ji, Y., Bian, X., and Yan, X. (2009). Identification of the immediate-early genes of white spot syndrome virus. Virology 385, 267-274.
53. Liao, I.C. (1989). Penaeus monodon culture in Taiwan: Through two decades of growth. Int J Aquacult Fish Technol 1, 16-24.
54. Licht, J.D., Grossel, M.J., Figge, J., and Hansen, U.M. (1990). Drosophila Kruppel protein is a transcriptional repressor. Nature 346, 76-79.
55. Lin, Y.R., Hung, H.C., Leu, J.H., Wang, H.C., Kou, G.H., and Lo, C.F. (2011). The role of aldehyde dehydrogenase and hsp70 in suppression of white spot syndrome virus replication at high temperature. J Virol 85, 3517-3525.
56. Liu, W.J., Chang, Y.S., Wang, A.H., Kou, G.H., and Lo, C.F. (2007). White spot syndrome virus annexes a shrimp STAT to enhance expression of the immediate-early gene ie1. J Virol 81, 1461-1471.
57. Liu, W.J., Chang, Y.S., Wang, C.H., Kou, G.H., and Lo, C.F. (2005). Microarray and RT-PCR screening for white spot syndrome virus immediate-early genes in cycloheximide-treated shrimp. Virology 334, 327-341.
58. Liu, W.J., Yu, H.T., Peng, S.E., Chang, Y.S., Pien, H.W., Lin, C.J., Huang, C.J., Tsai, M.F., Wang, C.H., Lin, J.Y., et al. (2001). Cloning, characterization, and phylogenetic analysis of a shrimp white spot syndrome virus gene that encodes a protein kinase. Virology 289, 362-377.
59. Lo, C.F., Ho, C.H., Peng, S.E., Chen, C.H., Hsu, H.C., Chiu, Y.L., Chiu, C.F., Chang, C.F., Liu, K.F., Su, M.S., et al. (1996). White spot syndrome baculovirus (WSBV) detected in cultured and captured shrimp, crabs and other arthropods. Dis Aquat Organ 27, 215-225.
60. Lo, C.F., Hsu, H.C., Tsai, M.F., Ho, C.H., Peng, S.E., Kou, G.H., and Lightner, D.V. (1999). Specific genomic DNA fragment analysis of different geographical clinical samples of shrimp white spot syndrome virus. Dis Aquat Organ 35, 175-185.
61. Lo, C.F.a.K., G. H. (1998). Virus-associated white spot syndrome of shrimp in Taiwan: a review. Fish Pathol 33, 365-371.
62. Lu, C.P., Zhu, S., Guo, F.S., and Wu, S.Y. (1997). Electron microscopic observation on a non-occluded baculo-like virus in shrimps. Arch Virol 142, 2073-2078.
63. Lu, L., and Kwang, J. (2004). Identification of a novel shrimp protein phosphatase and its association with latency-related ORF427 of white spot syndrome virus. FEBS Lett 577, 141-146.
64. Maeda, M., Saitoh, H., Mizuki, E., Itami, T., and Ohba, M. (2004). Replication of white spot syndrome virus in ovarian primary cultures from the kuruma shrimp, Marsupenaeus japonicus. J Virol Methods 116, 89-94.
65. Martin, K.M., Cooper, W.N., Metcalfe, J.C., and Kemp, P.R. (2000). Mouse BTEB3, a new member of the basic transcription element binding protein (BTEB) family, activates expression from GC-rich minimal promoter regions. Biochem J 345, 529-533.
66. Matsumoto, N., Kubo, A., Liu, H., Akita, K., Laub, F., Ramirez, F., Keller, G., and Friedman, S.L. (2006). Developmental regulation of yolk sac hematopoiesis by Kruppel-like factor 6. Blood 107, 1357-1365.
67. Matsumoto, N., Laub, F., Aldabe, R., Zhang, W., Ramirez, F., Yoshida, T., and Terada, M. (1998). Cloning the cDNA for a new human zinc finger protein defines a group of closely related Kruppel-like transcription factors. J Biol Chem 273, 28229-28237.
68. McManus, M.T., and Sharp, P.A. (2002). Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3, 737-747.
69. Mori, T., Sakaue, H., Iguchi, H., Gomi, H., Okada, Y., Takashima, Y., Nakamura, K., Nakamura, T., Yamauchi, T., Kubota, N., et al. (2005). Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem 280, 12867-12875.
70. Morita, M., Kobayashi, A., Yamashita, T., Shimanuki, T., Nakajima, O., Takahashi, S., Ikegami, S., Inokuchi, K., Yamashita, K., Yamamoto, M., et al. (2003). Functional analysis of basic transcription element binding protein by gene targeting technology. Mol Cell Biol 23, 2489-2500.
71. Oates, A.C., Pratt, S.J., Vail, B., Yan, Y., Ho, R.K., Johnson, S.L., Postlethwait, J.H., and Zon, L.I. (2001). The zebrafish klf gene family. Blood 98, 1792-1801.
72. Oishi, Y., Manabe, I., Tobe, K., Tsushima, K., Shindo, T., Fujiu, K., Nishimura, G., Maemura, K., Yamauchi, T., Kubota, N., et al. (2005). Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab 1, 27-39.
73. Pandya, K., and Townes, T.M. (2002). Basic residues within the Kruppel zinc finger DNA binding domains are the critical nuclear localization determinants of EKLF/KLF-1. J Biol Chem 277, 16304-16312.
74. Pearson, R., Fleetwood, J., Eaton, S., Crossley, M., and Bao, S. (2008). Kruppel-like transcription factors: a functional family. Int J Biochem Cell Biol 40, 1996-2001.
75. Pearson, R.C., Funnell, A.P., and Crossley, M. (2011). The mammalian zinc finger transcription factor Kruppel-like factor 3 (KLF3/BKLF). IUBMB Life 63, 86-93.
76. Perkins, A.C., Sharpe, A.H., and Orkin, S.H. (1995). Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature 375, 318-322.
77. Philipsen, S., and Suske, G. (1999). A tale of three fingers: the family of mammalian Sp/XKLF transcription factors. Nucleic Acids Res 27, 2991-3000.
78. Ratziu, V., Lalazar, A., Wong, L., Dang, Q., Collins, C., Shaulian, E., Jensen, S., and Friedman, S.L. (1998). Zf9, a Kruppel-like transcription factor up-regulated in vivo during early hepatic fibrosis. Proc Natl Acad Sci U S A 95, 9500-9505.
79. Ribeiro, A., Bronk, S.F., Roberts, P.J., Urrutia, R., and Gores, G.J. (1999). The transforming growth factor beta(1)-inducible transcription factor TIEG1, mediates apoptosis through oxidative stress. Hepatology 30, 1490-1497.
80. Robalino, J., Browdy, C.L., Prior, S., Metz, A., Parnell, P., Gross, P., and Warr, G. (2004). Induction of antiviral immunity by double-stranded RNA in a marine invertebrate. J Virol 78, 10442-10448.
81. Schuh, R., Aicher, W., Gaul, U., Cote, S., Preiss, A., Maier, D., Seifert, E., Nauber, U., Schroder, C., Kemler, R., et al. (1986). A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Kruppel, a Drosophila segmentation gene. Cell 47, 1025-1032.
82. Scohy, S., Gabant, P., Van Reeth, T., Hertveldt, V., Dreze, P.L., Van Vooren, P., Riviere, M., Szpirer, J., and Szpirer, C. (2000). Identification of KLF13 and KLF14 (SP6), novel members of the SP/XKLF transcription factor family. Genomics 70, 93-101.
83. Shie, J.L., Chen, Z.Y., Fu, M., Pestell, R.G., and Tseng, C.C. (2000). Gut-enriched Kruppel-like factor represses cyclin D1 promoter activity through Sp1 motif. Nucleic Acids Res 28, 2969-2976.
84. Shields, J.M., Christy, R.J., and Yang, V.W. (1996). Identification and characterization of a gene encoding a gut-enriched Kruppel-like factor expressed during growth arrest. J Biol Chem 271, 20009-20017.
85. Shin, Y.C., Liu, B.Y., Tsai, J.Y., Wu, J.T., Chang, L.K., and Chang, S.C. (2010). Biochemical characterization of the small ubiquitin-like modifiers of Chlamydomonas reinhardtii. Planta 232, 649-662.
86. Simmen, R.C., Eason, R.R., McQuown, J.R., Linz, A.L., Kang, T.J., Chatman, L., Jr., Till, S.R., Fujii-Kuriyama, Y., Simmen, F.A., and Oh, S.P. (2004). Subfertility, uterine hypoplasia, and partial progesterone resistance in mice lacking the Kruppel-like factor 9/basic transcription element-binding protein-1 (Bteb1) gene. J Biol Chem 279, 29286-29294.
87. Song, C.Z., Keller, K., Murata, K., Asano, H., and Stamatoyannopoulos, G. (2002). Functional interaction between coactivators CBP/p300, PCAF, and transcription factor FKLF2. J Biol Chem 277, 7029-7036.
88. Stanojevic, D., Hoey, T., and Levine, M. (1989). Sequence-specific DNA-binding activities of the gap proteins encoded by hunchback and Kruppel in Drosophila. Nature 341, 331-335.
89. Subramaniam, M., Gorny, G., Johnsen, S.A., Monroe, D.G., Evans, G.L., Fraser, D.G., Rickard, D.J., Rasmussen, K., van Deursen, J.M., Turner, R.T., et al. (2005). TIEG1 null mouse-derived osteoblasts are defective in mineralization and in support of osteoclast differentiation in vitro. Mol Cell Biol 25, 1191-1199.
90. Sun, R., Chen, X., and Yang, V.W. (2001). Intestinal-enriched Kruppel-like factor (Kruppel-like factor 5) is a positive regulator of cellular proliferation. J Biol Chem 276, 6897-6900.
91. Suske, G., Bruford, E., and Philipsen, S. (2005). Mammalian SP/KLF transcription factors: bring in the family. Genomics 85, 551-556.
92. Tan, F.L., and Yin, J.Q. (2004). RNAi, a new therapeutic strategy against viral infection. Cell Res 14, 460-466.
93. Tsai, M.-F., Kou, G.-H., Liu, H.-C., Liu, K.-F., Chang, C.-F., Peng, S.-E., Hsu, H.-C., Wang, C.-H., and Lo, C.-F. (1999). Long-term presence of white spot syndrome virus (WSSV) in a cultivated shrimp population without disease outbreaks. Diseases of Aquatic Organisms 38, 107-114.
94. Tsai, M.F., Lo, C.F., van Hulten, M.C., Tzeng, H.F., Chou, C.M., Huang, C.J., Wang, C.H., Lin, J.Y., Vlak, J.M., and Kou, G.H. (2000a). Transcriptional analysis of the ribonucleotide reductase genes of shrimp white spot syndrome virus. Virology 277, 92-99.
95. Tsai, M.F., Yu, H.T., Tzeng, H.F., Leu, J.H., Chou, C.M., Huang, C.J., Wang, C.H., Lin, J.Y., Kou, G.H., and Lo, C.F. (2000b). Identification and characterization of a shrimp white spot syndrome virus (WSSV) gene that encodes a novel chimeric polypeptide of cellular-type thymidine kinase and thymidylate kinase. Virology 277, 100-110.
96. Turner, J., and Crossley, M. (1998). Cloning and characterization of mCtBP2, a co-repressor that associates with basic Kruppel-like factor and other mammalian transcriptional regulators. EMBO J 17, 5129-5140.
97. Turner, J., and Crossley, M. (1999). Mammalian Kruppel-like transcription factors: more than just a pretty finger. Trends Biochem Sci 24, 236-240.
98. van Hulten, M.C., Goldbach, R.W., and Vlak, J.M. (2000a). Three functionally diverged major structural proteins of white spot syndrome virus evolved by gene duplication. J Gen Virol 81, 2525-2529.
99. van Hulten, M.C., Westenberg, M., Goodall, S.D., and Vlak, J.M. (2000b). Identification of two major virion protein genes of white spot syndrome virus of shrimp. Virology 266, 227-236.
100. van Hulten, M.C., Witteveldt, J., Peters, S., Kloosterboer, N., Tarchini, R., Fiers, M., Sandbrink, H., Lankhorst, R.K., and Vlak, J.M. (2001). The white spot syndrome virus DNA genome sequence. Virology 286, 7-22.
101. van Vliet, J., Turner, J., and Crossley, M. (2000). Human Kruppel-like factor 8: a CACCC-box binding protein that associates with CtBP and represses transcription. Nucleic Acids Res 28, 1955-1962.
102. Vanhecke, D., and Janitz, M. (2005). Functional genomics using high-throughput RNA interference. Drug Discov Today 10, 205-212.
103. Wang, C.H., Lo, C.F., Leu, J.H., Chou, C.M., Yeh, P.Y., Chou, H.Y., Tung, M.C., Chang, C.F., Su, M.S., and Kou, G.H. (1995). Purification and genomic analysis of baculovirus associated with white spot syndrome (WSBV) of Penaeus monodon. Dis Aquat Organ 23, 239-242.
104. Wang, C.S., Tang, K. F. J., Kou, G. H., Chen, S. N. (1997). Light and electron microscopic evidence of white spot disease in the giant tiger shrimp, Penaeus monodon (Fabricius), and the kuruma shrimp, Penaeus japonicus (Bate), cultured in Taiwan. Journal of Fish Diseases 20, 323-331.
105. Wang, Q.C., Nie, Q.H., and Feng, Z.H. (2003). RNA interference: antiviral weapon and beyond. World J Gastroenterol 9, 1657-1661.
106. Wang, Y., and Mitch, W.E. (2011). Proteins and renal fibrosis: low-protein diets induce Kruppel-like factor-15, limiting renal fibrosis. Kidney Int 79, 933-934.
107. Wang, Y.G., Hassan, M.D., Shariff, M., Zamri, S.M., and Chen, X. (1999). Histopathology and cytopathology of white spot syndrome virus (WSSV) in cultured Penaeus monodon from peninsular Malaysia with emphasis on pathogenesis and the mechanism of white spot formation. Dis Aquat Organ 39, 1-11.
108. Wang, Z., Chua, H.K., Gusti, A.A., He, F., Fenner, B., Manopo, I., Wang, H., and Kwang, J. (2005). RING-H2 protein WSSV249 from white spot syndrome virus sequesters a shrimp ubiquitin-conjugating enzyme, PvUbc, for viral pathogenesis. J Virol 79, 8764-8772.
109. Wani, M.A., Means, R.T., Jr., and Lingrel, J.B. (1998). Loss of LKLF function results in embryonic lethality in mice. Transgenic Res 7, 229-238.
110. Witteveldt, J., Van Hulten, M.C., and Vlak, J.M. (2001). Identification and phylogeny of a non-specific endonuclease gene of white spot syndrome virus of shrimp. Virus Genes 23, 331-337.
111. Yang, F., He, J., Lin, X., Li, Q., Pan, D., Zhang, X., and Xu, X. (2001). Complete genome sequence of the shrimp white spot bacilliform virus. J Virol 75, 11811-11820.
112. Yet, S.F., McA'Nulty, M.M., Folta, S.C., Yen, H.W., Yoshizumi, M., Hsieh, C.M., Layne, M.D., Chin, M.T., Wang, H., Perrella, M.A., et al. (1998). Human EZF, a Kruppel-like zinc finger protein, is expressed in vascular endothelial cells and contains transcriptional activation and repression domains. J Biol Chem 273, 1026-1031.
113. Zhang, W., and Bieker, J.J. (1998). Acetylation and modulation of erythroid Kruppel-like factor (EKLF) activity by interaction with histone acetyltransferases. Proc Natl Acad Sci U S A 95, 9855-9860.
114. Zhang, W., Geiman, D.E., Shields, J.M., Dang, D.T., Mahatan, C.S., Kaestner, K.H., Biggs, J.R., Kraft, A.S., and Yang, V.W. (2000). The gut-enriched Kruppel-like factor (Kruppel-like factor 4) mediates the transactivating effect of p53 on the p21WAF1/Cip1 promoter. J Biol Chem 275, 18391-18398.
115. Zhang, W., Kadam, S., Emerson, B.M., and Bieker, J.J. (2001). Site-specific acetylation by p300 or CREB binding protein regulates erythroid Kruppel-like factor transcriptional activity via its interaction with the SWI-SNF complex. Mol Cell Biol 21, 2413-2422.
116. Zhu, F., Du, H., Miao, Z.G., Quan, H.Z., and Xu, Z.R. (2009). Protection of Procambarus clarkii against white spot syndrome virus using inactivated WSSV. Fish Shellfish Immunol 26, 685-690.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40498-
dc.description.abstract白點症病毒 (white spot syndrome virus, WSSV) 感染蝦會導致高度的致死率,而本研究室先前在草蝦 (Penaeus monodon) 中成功選殖了第一個Kruppel-like factor (KLF),若將KLF抑制則會增加被WSSV感染的蝦體存活率。經由基因體資料庫分析比對,發現草蝦和白蝦 (Litopenaeus vannamei) 彼此具有高度的基因相似性,因此根據草蝦KLF (PmKLF) 的序列,本研究在白蝦組織中也成功的選殖出KLF,並命名為LvKLF。LvKLF全長可以轉譯出360個胺基酸,經由序列分析發現草蝦和白蝦KLF胺基酸具有93%相似性,且鋅指區域完全相同,而利用抗KLF抗體能偵測到大小約為40 kDa的LvKLF。利用螢光顯微鏡觀察LvKLF在Sf9細胞表現時會在細胞核中聚集成點狀分布。之後進行病毒極早期基因整體分析,篩選了在白點症病毒台灣分離株基因體上編號分別為108、126、135、136、137、140、150、154、155、156、157、159、164、234以及304號的開放譯讀區 (open reading frame),在白蝦體中利用siRNA抑制LvKLF基因表現後,再感染白點症病毒,於不同時間點收取蝦體組織直到感染病毒48小時,之後利用反轉錄聚合酶鏈反應分析,結果發現這十五個白點症病毒極早期基因表現均被抑制,另外以即時聚合酶鏈反應定量分析也得到相同的抑制結果。最後,進一步的在昆蟲細胞Sf9中,以預測的WSSV極早期基因啟動子進行報導基因分析,發現LvKLF會活化108、126、140、164、234、304號基因啟動子的活性。因此,本研究發現了白蝦的KLF對於蝦體在被WSSV感染的過程中扮演很重要的角色。zh_TW
dc.description.abstractWhite spot syndrome virus (WSSV) infection can cause a significant mortality to shrimp cultivation. Our previous study identified the first kruppel-like factor (PmKLF) in Penaeus monodon. Inhibition of PmKLF by double-stranded RNAs decreased the mortality in WSSV-infected shrimps. According to genomic database, the sequences of P. monodon and Litopenaeus vanname display highly identity. In this study, a KLF from L. vannamei was cloned and characterized. The full-length LvKLF gene is 1080 bp, encoding a polypeptide of 360 amino acids. Sequence analysis showed that the identity of LvKLF and PmKLF amino acids is 93% and the zinc-finger DNA binding domain are the same. Immunoblotting using the anti-KLF antibody indicated that the apparent molecular mass of LvKLF protein is about 40 kDa. Moreover, immunofluorescence analysis revealed that LvKLF is located in the nucleus as dots after overexpressing LvKLF in Sf9 insect cells. So far, fifteen WSSV candidate immediate early (IE) genes including wssv108、wssv126、wssv135、wssv136、wssv137、wssv140、wssv150、wssv154、wssv155、wssv156、wssv157、wssv159、wssv164、wssv234 and wssv304 in the Taiwan isolate had been identified. This study indicated that these IE genes were inhibited in WSSV-challenged shrimps that had been injected with double-stranded RNAs of LvKLF. Furthermore, the reporter assay by using predictive WSSV IE promoters revealed that LvKLF enhanced the promoter activities of wssv108, wssv126, wssv140, wssv164, wssv234 and wssv304. Hence, this study demonstrates that the kruppel-like factor in Litopenaeus vannamei plays a crucial role in WSSV infection.en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:49:23Z (GMT). No. of bitstreams: 1
ntu-100-R98b47404-1.pdf: 7441437 bytes, checksum: ca18526d04fcf8fa3eae6a942194cb1b (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents誌謝…………………………………………………………………………...………ii
中文摘要 ……………………………………………………………………………..iii
Abstract …………….……………………………………………………………….iv
一. 前言 1
1. 台灣水產養殖現況 1
2. 白點症病毒 (White Spot Syndrome Virus, WSSV) 1
3. 白點症病毒的生活史 3
4. 白點症病毒的極早期基因 (Immediate early genes) 5
5. Kruppel-like factor (KLF) 7
二. 研究目的 13
三. 材料與方法 14
1. 菌種與細胞株 14
2. 質體的建構 14
3. 勝任細胞的製備 14
4. 大腸桿菌的轉型作用 14
5. 質體DNA的萃取 15
6. 蝦組織RNA的萃取 15
7. 白蝦KLF之基因選殖-5’端快速放大cDNA端點 15
8. 白蝦KLF基因之構築 16
9. LvKLF與PmKLF序列的分析比對 16
10. 反轉錄酶-聚合酶鏈反應 16
11. 大腸桿菌重組蛋白質His-LvKLF的誘導表現 17
12. 細胞轉染 18
13. 西方點墨法 18
14. 螢光染色分析 19
15. 冷光酵素活性分析 19
16. 雙股核醣核酸之製備 19
17. RNA靜默化試驗 20
18. 人工注射感染試驗與蝦組織檢體的收取 20
19. 即時聚合酶鏈反應 20
四. 結果 22
1. 白蝦LvKLF基因的選殖 22
2. 白蝦LvKLF和草蝦PmKLF的胺基酸序列比較 22
3. LvKLF於大腸桿菌、Sf9及白蝦體的表現 22
4. LvKLF會在細胞核內表現 23
5. LvKLF對白點症病毒極早期基因表現之調控分析 23
6. LvKLF會調控病毒極早期基因啟動子 25
7. LvKLF對白點症病毒極早期基因表現之調控分析 26
五. 討論 27
六. 圖表 33
表1、 本研究所建構的質體列表 33
表2、 本研究所使用的引子列表 41
表3、 LvKLF對於白點症病毒極早期基因預測啟動子區活性的調控 45
圖1、 LvKLF基因選殖的流程圖 46
圖2、 LvKLF的核酸序列和其對應的胺基酸序列 47
圖3、 LvKLF與PmKLF的胺基酸序列比對。 48
圖4、 重組LvKLF和白蝦內LvKLF的蛋白質表現 49
圖5、 LvKLF會在秋夜盜蛾 (Spodoptera frugiperda, Sf9)細胞的表現 50
圖6、 白蝦體內LvKLF基因靜默化會降低白點症病毒極早期基因表現 51
圖7、 利用基因靜默化抑制LvKLF基因會導致白點症病毒極早期基因wssv108、wssv126以及wssv140的表現量降低 52
七. 參考文獻 53
八. 附錄 68
附錄1、 哺乳類細胞Sp/KLF 家族的鋅指區域蛋白質序列比對 68
附錄2、 KLF分子結構示意圖 69
附錄3、 Sp1-like和KLF蛋白質的結構特性 70
附錄4、 KLF在白蝦 (L. vannamei) 血球細胞的表現位置 71
附錄5、白點症病毒極早期基因的預測啟動子序列 74
dc.language.isozh-TW
dc.subjectKLF蛋白質zh_TW
dc.subject白蝦zh_TW
dc.subject白點症病毒zh_TW
dc.subject白點症病毒極早期基因zh_TW
dc.subjectKruppel-like factor蛋白質zh_TW
dc.subjectWSSV immediate early geneen
dc.subjectKruppel-like factoren
dc.subjectWSSVen
dc.subjectLitopenaeus vannameien
dc.title白蝦 Kruppel-like factor於白點症病毒感染時之功能性探討zh_TW
dc.titleRole of the Kruppel-like factor in Litopenaeus vannamei after white spot syndrome virus infectionen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王涵青,黃偉邦,呂健宏
dc.subject.keyword白蝦,白點症病毒,白點症病毒極早期基因,Kruppel-like factor蛋白質,KLF蛋白質,zh_TW
dc.subject.keywordLitopenaeus vannamei,WSSV,WSSV immediate early gene,Kruppel-like factor,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2011-08-12
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
7.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved