請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40491完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡曜陽 | |
| dc.contributor.author | Chih-Kang Chang | en |
| dc.contributor.author | 張志綱 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:49:11Z | - |
| dc.date.available | 2010-08-06 | |
| dc.date.copyright | 2008-08-06 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-30 | |
| dc.identifier.citation | 1. 陳奕穎,模具業現況與市場分析,金屬工業研究中心出版,民國九十二年
2. 木本康雄,精密加工電學應用,復漢出版社,民國八十九年 3. W. Koenig, L. Joerres, Electro-Discharge Polishing as a Surface Finishing Process, ISEM-9, (1989), p. 14-17 4. K. Furutania, A. Saneto, H. Takezawa, N. Mohri, H. Miyake, Accretion of titanium carbide by electrical discharge machining with powder suspended in working fluid, Precision Engineering, Vol. 25, (2001), p. 138-144 5. 莊嘉文,粉末運動行為對於粉末放電加工特性的影響,國立台灣大學機械工程學系碩士論文,民國九十四年 6. 洪榮洲,結合微細放電與電解拋光之微孔加工研究,國立中央大學機械工程學系碩士論文,民國九十二年 7. 黃士偉,使用電泳沉積研磨加工改善放電微孔精度之研究,國立中央大學機械工程學系碩士論文,民國九十一年 8. 許俊傑,利用電泳沉積Al2O3粉末對微能量放電加工表面拋光的基礎研究,國立中央大學機械工程學系碩士論文,民國九十二年 9. G..W. Chang, B.H. Yan, R.T. Hsu, Study on cylindrical magnetic abrasive finishing using unbonded magnetic abrasives, International Journal of Machining Tool and Manufacture, Vol. 42, (2001), p. 575-583 10. Y.C. Lin, B.H. Yan, Y.S. Chang, Machining characteristics of titanium alloy (Ti-6Al-4V) using a combination process of EDM with USM, Journal of Material Processing Technology, Vol. 104, (2000), p.171-177 11. A.C. Wang, B.H. Yan, X.T. Lee, F.Y. Huang, Use of micro ultrasonic vibration lapping to enhance the precision of microholes drilled by micro electro-discharge machining, International Journal of Machining Tool and Manufacture, Vol. 42, (2002), p. 915-923 12. 陳建良,結合微細放電與高頻抖動研磨之惟孔加工研究,國立中央大學機械工程學系碩士論文,民國九十一年 13. T. Kuriyagawa, M. Saeki, K. Syoji, Electrorheological fluid-assisted ultra-precision polishing for small three-dimensional parts, Journal of the International Societies for Precision Engineering and Nanotechnology, Vol. 26, (2002), p. 370-380 14. W.B. Kim, S.J. Lee, Y.J. Kim, E.S. Lee, The electromechanical principle of electrorheological fluid-assisted polishing, International Journal of Machine Tool and Manufacture, Vol. 43, (2003), p. 81-88 15. W.B. Kim, B.K. Min, S.J. Lee, Development of a padless ultraprecision polishing method using electrorheological fluid, Journal of Materials Processing Technology, Vol. 155-156, (2004), p. 1293-1299 16. L. Zhang, Y.W. Zhao, X.S. He, T. Kuriyagawa, An investigation of effective area in electrorheological fluid-assisted polishing of tungsten carbide, International Journal of Machine Tool and Manufacture, Vol. 48, (2008), p. 295-306 17. Y.Y. Tsai, C.H. Tseng, C.K. Chang, Development of a combined machining method using electrorheological fluids for EDM, Journal of Materials Processing Technology, Vol. 201, (2008), p. 565-569 18. W.M. Winslow, Induced Vibration of Suspensions, Journal of Applied Physics, Vol. 20, (1949), p. 1137-1140 19. D.L. Klass, T.W. Martinek, Electroviscous fluids. Ⅰ. Rheological properties, Journal of Applied Physics, Vol. 38, (1967), p. 67-74 20. J.E. Stangroom, Electrorheological fluids, Physics in Technology, Vol. 14, (1983), p. 290-296 21. T.C. Halsey, Electrorheological fluids, Science, Vol. 258, (1992), p. 761-766 22. T. Chen, R. N. Zitter, R. Tao, Laser diffraction of the crystal structure of an electrorheological fluid, Physical Review Letters, Vol. 68, (1999), p. 6181-6184 23. A.F. Sprecher, Y. Chen, H. Conrad, Measurement of forces between particles in a model ER fluid, Proceedings of the 2nd International Conference on Electrorheological Fluids, (1990), p. 82-89 24. R.T. Bonnecaze, J.F. Brandy, Dynamic simulation of an electrorheological fluid, Journal of Chemical Physics, Vol. 96, (1992), p. 2183-2202 25. R. Nava, M.A. Ponce, L. Rejon, S. Viquez, V.M. Castaño, Response time and viscosity of electrorheological fluids, Smart Materials and Structures, Vol. 6, (1997), p. 67-75 26. D.L. Klass, T.W. Martinek, Electroviscous fluids. Ⅱ. Electrical properties, Journal of Applied Physics, Vol. 38, (1967), p. 75-80 27. A.P. Gast, C.F. Zukoski, Electrorheological fluids as colloidal suspensions, Advances in Colloid and Interface Science, Vol. 30, (1989), p. 153-202 28. L.C. Davis, Polarization forces and conductivity effects in electrorheological fluids, Journal of Applied Physics, Vol. 72, (1992), p. 1334-1340 29. N.J. Félici, Interfacial effects and electrorheological force: Criticism of the conduction model, Journal of Electrostatics, Vol. 40-41, (1997), p. 567-572 30. D.J. Klingenberg, Frank van Swol, C.F. Zukoski, The small shear rate response of electrorheological suspensions. I. Simulation in the point–dipole limit, Journal of Chemical Physics, Vol. 97, (1991), p. 6160-6169 31. C.W. Wu, H. Conrad, Influence of mixed particle size on electrorheological response, Journal of Applied Physics, Vol. 83, (1998), p. 3880-3884 32. K. Negita, H. Itou, T. Yakou, Electrorheological effect in suspension composed of starch powder and silicone oil, Journal of Colloid and Interface Science, Vol. 209, (1999), p. 251-254 33. O. Quardrat, J. Stejskal, Polyaniline in Electrorheology, Journal of Industrial and Engineering Chemistry, Vol. 12, (2006), 352-361 34. J.H. Lee, M.S. Cho, H.J. Choi, N.S. Jhon, Effect of polymerization temperature on polyaniline based electrorheological suspensions, Colloid and Polymer Science, Vol. 277, (1999), p. 73-76 35. A. Gozdalik, H. Wyciślik, J.Płocharski, Electrorheological effect in suspensions of polyaniline, Synthetic Metals, Vol. 109, (2000), p. 147-150 36. S.Z. Wu, S. Lu, J.R. Shen, Electrorheological suspension, Polymer International, Vol. 41, (1996), p. 363-367 37. Y.M. Quan, Y.H. Liu, Powder-suspension dielectric fluid for EDM, Journal of Materials Processing Technology, Vol. 52, (1995), p. 44–54 38. Y.F. Tzeng, C.Y. Lee, Effects of powder characteristics on electrodischarge machining efficiency, International Journal of Advanced Manufacturing Technology, Vol. 17, (2001), p. 586–592 39. 曾建豪,放電拋光複合加工技術之開發研究,國立台灣大學機械工程學系碩士論文,民國九十五年 40. H.J. Lee, B.D. Chin, S.M. Yang, O.O. Park, Surfactant effect on the stability and electrorheological properties of polyaniline particle suspension, Journal of Colloid and Interface Science, Vol. 206, (1998), p. 424-438 41. 丁純乾,添加界面活性劑對放電加工特性的影響,國立中央大學機械工程學系碩士論文,民國九十三年 42. 鄒大鈞,放電加工,復漢出版社,民國九十年 43. 張渭川,放電加工的結構與實用技術,全華科技圖書股份有限公司,民國九十年 44. 楊大智、吳錫侃、游正鋒,智能材料與智能系統,新文京開發出版股份有限公司,民國九十三年 45. 姚康德、成國祥,智慧材料,五南出版社,民國九十二年 46. J. Akhavan, Electro-rheological polymers, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 221, (2007), p. 577-587 47. 王鳳英,界面活性劑的原理與應用,高立圖書股份有限公司,民國七十五年 48. 賴耿陽,界面活性劑應用實務,復漢出版社,民國八十八年 49. J.Y. Yeh, Vibration control of a sandwich annular plate with an electrorheological fluid core layer, Smart Materials and Structures, Vol. 16, (2007), p. 837-842 50. K.G. Sung, Y.M. Han, J.W. Cho, S.B. Choi, Vibration control of vehicle ER suspension system using fuzzy moving sliding mode controller, Journal of Sound and Vibration, Vol. 311, (2008), p. 1004-1019 51. F.J. Pérez, M.P. Hierro, C. Gómez, L. Martínez, D. Duday, Silicon ion implantation on austenitic and ferritic stainless steels against localized aqueous corrosion, Surface and Coating Technology, Vol. 133-134 , (2000), p. 344-350 52. S. Abraham, E.Y. Choi, N. Kang, K.H. Kim, Microstructure and mechanical properties of Ti-Si-C-N films synthesized by plasma-enhanced chemical vapor deposition, Surface and Coating Technology, Vol. 202 , (2007), p. 915-919 53. A. Olofinjana, T. Tesfamichael, J.M. Bell, Chemical modification and the attending surface hardness of low alloy steel through medium energy nitrogen ion implantation, Journal of Materials Processing Technology, Vol. 164-165, (2005), p. 905-910 54. Y.J. Kim, R.J. Robison, Effect of surfactant on starch in a model system, Starch/Stärke, Vol. 31, (1979), p. 293-300 55. C.K. Chen, L. Raimond, Electrical properties of polymers: Chemical principles, Chapter 5, Munich; Vienna; New York: Hanser publishers, (1987) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40491 | - |
| dc.description.abstract | 放電加工(EDM)是目前發展最成熟的模具加工方法之一,但加工後的表面因為放電火花衝擊造成有許多的放電坑與白層(再鑄層),使得加工表面品質沒有達到理想的狀態,通常在放電後還要進行拋光後製程。本實驗室首創以電流變拋光液(Electro-rheological polishing fluid, ERP fluid)取代傳統放電加工液;利用電流變液施加電場時能形成纖維鏈狀的特性,並與磨粒結合形成拋光刷,即能進行放電拋光的複合加工製程,使工件在同一製程下達成鏡面效果的淨形加工。
由於高分子具質地較軟且拋光時不會對工件產生過切的性質,本研究利用高分子型電流變液進行放電拋光的加工實驗。實驗先以三種聚苯胺高分子及澱粉掺入矽油調製成電流變液進行放電加工,探討並比較其與在一般放電加工油的差異。發現雖然表面粗糙度及材料移除率雖不如放電加工油理想,但工件表面會增加矽元素而增加硬度及抗腐蝕性。接著將電流變液與氧化鋁磨粒調配成電流變拋光液,搭配不同的濃度進行放電拋光實驗。實驗結果發現,使用濃度100g/L的澱粉電流變拋光液,磨粒與電流變顆粒搭配濃度比例為1:1時並用負極性電極加工,可得最好的拋光效果,不只將原先使用傳統放電加工油所造成的約3μm白層完全去除,也使表面粗糙度從Ra 0.69μm大幅降低至Ra 0.10μm,改善程度高達86%。此外由電流變特性測試結果,顯示澱粉在電場下能承受的剪應力與抗擊穿電場強度皆最大,其證實了適用於放電拋光複合製程的高分子電流變液材料之選擇條件。本研究不只成功開發澱粉電流變拋光液實現放電拋光複合製程技術,並解明此新穎的澱粉電流變拋光液的材料特性。 | zh_TW |
| dc.description.abstract | Electrical discharge machining (EDM) is an important manufacturing process for mold and die. However, the work-piece surfaces after EDM process have the defects, such as micro-craters and white layer (recast layer). Therefore, the polishing is usually required after EDM process. This study presents a novel method of EDM that used Electro-rheological polishing fluid (ERP fluid) instead of conventional EDM oil. When applying high electric field between the electrode and work-piece, the dielectric particles are polarized and then the ER fluid will transform into fibrous chains. The fibrous chains seem to be working as polishing brushes dragging abrasive to carry out net shape by combining EDM and polishing in one process.
In this study, the ER fluids were composed of polyaniline (PANI) or starch particles suspending in silicone oil. We first discussed EDM effects of ER fluids and compared it with conventional EDM oil. The surface roughness and material removal rate (MRR) in ER fluid are worse than EDM oil, but the workpiece surface is impinged by silicone, which can improve hardness and anti-corrosion of work-piece. In the experiments of ERP fluid mixing abrasive and ER fluid, using ER-abrasive ratio of 1:1 and negative electrode can obtain better surface roughness. We had the best machined surface without white layer and surface roughness of Ra 0.10μm when the starch concentration was 100g/L. There is 86% improvement of surface roughness from Ra 0.69μm for conventional EDM oil. Based on electro-rheological test, we found out starch is the most suitable particle for EDM-polishing because it has the largest shear stress and the highest breakdown electric field strength. This study successfully developed a novel ERP fluid using starch and alumina particles to carry out the combined process of EDM and polishing. Moreover, this study also indicates the key properties of ER fluid for EDM-polishing process. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:49:11Z (GMT). No. of bitstreams: 1 ntu-97-R95522719-1.pdf: 3731052 bytes, checksum: 5b68f5a4dfed5889da8b4e66fe063f3d (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 誌謝……………...………………………………………………..…………………... I
中文摘要……….…………………………………………………..…………………II 英文摘要……………………………………………………………...…………….. III 目錄…………….…………………………………………………………………. …V 圖目錄…………………………………………………………………………….. VIII 表目錄……………………………………………………………………….……. XIII 第一章 緒論. ……………………………………………………………..………....1 1.1研究背景.. ……………………………………………………..……...…….1 1.2文獻回顧.. …………………………………………………...…..………….7 1.3研究動機與目的……………………………………………...……………15 1.4 論文大綱……………………………………………………...………….16 第二章 相關技術理論介紹………………………………………………………..17 2.1 放電加工原理………………………………....…………………………17 2.1.1放電現象與狀態………………………………...……..………….…17 2.1.2 放電加工參數與加工特性……………………...……..………..…20 2.1.3 基本放電迴路………………………………...………..…………..23 2.1.4 電氣條件與加工特性之關係……………………….....…………..27 2.2 電流變液相關理論……………………………………...……………….29 2.2.1 電流變液現象…………………………….….……...……..………29 2.2.2 電流變效應原理……………………………..………...…………..33 2.2.3 電流變液的力學性質………………………..…………...……..…36 2.2.4 電流變液材料………………………………..……………...……..41 2.3 界面活性劑定義及基本性質…………………………………...……….44 第三章 實驗方法與步驟…………………………………….………………….…47 3.1 實驗目的…………………………………………………………………47 3.2 實驗規劃…………………………………………………………………48 3.3 實驗材料…………………………………………………………………49 3.3.1 電極材料……………………………………..…………………….49 3.3.2 工件材料……………………………………..………………….…49 3.3.3 加工液………………………………………..…………………….50 3.3.4 粉末材料……………………………………..…………………….52 3.3.5 界面活性劑…………………………………..………………….…55 3.4 實驗裝置…………………………………………………………………56 3.4.1 實驗基本設備………………………………..…………………….57 3.4.2 量測及其他實驗設備…………………………..………………….62 3.5 實驗方法…………………………………………………………………68 3.5.1 高分子型加工液放電加工實驗……………..………………….…70 3.5.2 添加磨粒於電流變液之放電拋光效果……..…………………….73 3.5.3 電流變液材料特性對放電拋光製程之影響..………………….…76 第四章 實驗結果與討論……………………………………………….………….77 4.1 高分子型加工液放電加工實驗…………………………………………77 4.1.1 高分子粉末種類及濃度變化的影響……………..……………….77 4.1.2 高分子粉末於一般放電加工油的影響……………..…………….82 4.1.3 加工液種類的效果比較………………………………..………….86 4.2 添加磨粒於電流變液對放電拋光特性之影響…………………………98 4.2.1 電流變液種類及濃度變化對放電拋光的影響……….…...…….100 4.2.2 導電高分子電流變液與極性變化對加工的影響…….…………115 4.2.3 磨粒比例變化的影響…………………………………….………120 4.2.4 添加界面活性劑於放電拋光製程……………………….………124 4.3 電流變液材料特性於放電拋光製程之影響……...………………...…134 4.3.1 電流變液特性測試………………………………….……………134 4.3.2 放電拋光用電流變液之材料特性……………….………………142 第五章 結論與未來展望…………………………………………………………144 5.1 結論……………………………………………………………...……...144 5.2 未來展望…………………………………………………………...…...146 參考文獻……………………………………………………………………………147 | |
| dc.language.iso | zh-TW | |
| dc.subject | 磨粒 | zh_TW |
| dc.subject | 電流變液 | zh_TW |
| dc.subject | 電拋光加工 | zh_TW |
| dc.subject | 濃度 | zh_TW |
| dc.subject | 高分子 | zh_TW |
| dc.subject | EDM-polishing | en |
| dc.subject | abrasive | en |
| dc.subject | polymer | en |
| dc.subject | concentration | en |
| dc.subject | Electro-rheological fluid (ER fluid) | en |
| dc.title | 高分子型電流變液對放電拋光特性之研究 | zh_TW |
| dc.title | The Study of Polymer Electro-rheological Fluid for EDM-Polishing Process | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊申語,郭文化,周昭昌,蔡曜陽 | |
| dc.subject.keyword | 電流變液,電拋光加工,濃度,高分子,磨粒, | zh_TW |
| dc.subject.keyword | Electro-rheological fluid (ER fluid),EDM-polishing,concentration,polymer,abrasive, | en |
| dc.relation.page | 150 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 3.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
