Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40486
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 王大銘(Da-Ming Wang) | |
dc.contributor.author | Yung-Hsu Wu | en |
dc.contributor.author | 吳永旭 | zh_TW |
dc.date.accessioned | 2021-06-14T16:49:02Z | - |
dc.date.available | 2010-08-05 | |
dc.date.copyright | 2008-08-05 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-31 | |
dc.identifier.citation | 1. Lifshitz, I.M. and V.V. Slyozov, The Kinetics of Precipitation from Supersaturated Solid Solutions. Journal of Physics and Chemistry of Solids, 1961. 19(1-2): p. 35-50.
2. Binder, K. and D. Stauffer, Theory for slowing down of relaxation and spinodal decomposition of binary-mixtures. Physical Review Letters, 1974. 33(17): p. 1006-1009. 3. Siggia, E.D., Late Stages of Spinodal Decomposition in Binary-Mixtures. Physical Review A, 1979. 20(2): p. 595-605. 4. Furukawa, H., Effect of Inertia on Droplet Growth in a Fluid. Physical Review A, 1985. 31(2): p. 1103-1108. 5. Furukawa, H., A Dynamic Scaling Assumption for Phase-Separation. Advances in Physics, 1985. 34(6): p. 703-750. 6. Bray, A.J., Theory of phase-ordering kinetics. Advances in Physics, 1994. 43(3): p. 357-459. 7. Gunton, J.D., San Miguel, M. and Sahni, P.S., Phase Transitions and Critical Phenomena, ed. C.a.L. Domb, J.L. Vol. 8. 1983 London, New York Academic Press. 8. Mulder, M., Basic Principles of Membrane Technology. 2nd ed. 1996, Dordrecht, Netherlands , Boston: Kluwer Academic. 9. Kesting, R.E., Synthetic Polymeric Membranes : A Structural Perspective. 2nd ed. 1985, New York Wiley. 10. Voorhees, P.W., The Theory of Ostwald Ripening. Journal of Statistical Physics, 1985. 38(1-2): p. 231-252. 11. Wagner, C., Theorie Der Alterung Von Niederschlagen Durch Umlosen (Ostwald-Reifung). Zeitschrift Fur Elektrochemie, 1961. 65(7-8): p. 581-591. 12. de Gennes, P.G., Dynamics of fluctuations and spinodal decomposition in polymer blends. Journal of Chemical Physics, 1980. 72(9): p. 4756. 13. Pincus, P., Dynamics of fluctuations and spinodal decomposition in polymer blends. II. Journal of Chemical Physics, 1981. 75(4). 14. Muratov, C.B., Unusual coarsening during phase separation in polymer systems. Physical Review Letters, 1998. 81(17): p. 3699-3702. 15. Doi, M. and S.F. Edwards, The Theory of Polymer Dynamics. 1986: Oxford : Clarendon Press. 16. Tanaka, H., Unusual Phase-Separation in a Polymer-Solution Caused by Asymmetric Molecular-Dynamics. Physical Review Letters, 1993. 71(19): p. 3158-3161. 17. Araki, T. and H. Tanaka, Three-dimensional Numerical Simulations of Viscoelastic Phase Separation: Morphological Characteristics. Macromolecules, 2001. 34(6): p. 1953-1963. 18. Liu, H., A. Bhattacharya, and A. Chakrabarti, Network domain structure in phase-separating polymer solutions. Journal of Chemical Physics, 1999. 111(24): p. 11183-11191. 19. Termonia, Y., Molecular modeling of structure development upon quenching of a polymer solution. Macromolecules, 1997. 30(18): p. 5367-5371. 20. Cao, Y., Zhang, H. D., Xiong, Z., Yang, Y. L., Viscoelastic effects on the dynamics of spinodal decomposition in binary polymer mixtures. Macromolecular Theory and Simulations, 2001. 10(4): p. 314-324. 21. Luo, K.F., W. Gronski, and C. Friedrich, Morphology and dynamics of phase-separating fluids with viscosity asymmetry. Macromolecular Theory and Simulations, 2004. 13(4): p. 365-373. 22. Tanaka, H., Critical-Dynamics and Phase-Separation Kinetics in Dynamically Asymmetric Binary Fluids - New Dynamic Universality Class for Polymer Mixtures or Dynamic Crossover. Journal of Chemical Physics, 1994. 100(7): p. 5323-5337. 23. Tanaka, H., Viscoelastic phase separation. Journal of Physics-Condensed Matter, 2000. 12(15): p. R207-R264. 24. Hoogerbrugge, P.J. and J.M.V.A. Koelman, Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics. Europhysics Letters, 1992. 19(3): p. 155-160. 25. Koelman, J.M.V.A. and P.J. Hoogerbrugge, Dynamic Simulations of Hard-Sphere Suspensions under Steady Shear. Europhysics Letters, 1993. 21(3): p. 363-368. 26. Groot, R.D. and P.B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. Journal of Chemical Physics, 1997. 107(11): p. 4423-4435. 27. Groot, R.D. and T.J. Madden, Dynamic simulation of diblock copolymer microphase separation. Journal of Chemical Physics, 1998. 108(20): p. 8713-8724. 28. Novik, K.E. and P.V. Coveney, Spinodal decomposition of off-critical quenches with a viscous phase using dissipative particle dynamics in two and three spatial dimensions. Physical Review E, 2000. 61(1): p. 435-448. 29. Castro, A.J., Versatile Microporous Polymers Developed. Chemical and Engineering News, 1978. 56: p. 23-24. 30. Tsai, F.J. and J.M. Torkelson, Microporous Poly(Methyl Methacrylate) Membranes - Effect of a Low-Viscosity Solvent on the Formation Mechanism. Macromolecules, 1990. 23(23): p. 4983-4989. 31. Hashimoto, T., M. Takenaka, and T. Izumitani, Spontaneous Pinning of Domain Growth during Spinodal Decomposition of Off-Critical Polymer Mixtures. Journal of Chemical Physics, 1992. 97(1): p. 679-689. 32. Kotnis, M.A. and M. Muthukumar, Entropy-Induced Frozen Morphology in Unstable Polymer Blends. Macromolecules, 1992. 25(6): p. 1716-1724. 33. Zeman, L.J. and A.L. Zydney, Microfiltration and Ultrafiltration: Principles and Applications 1996 New York: Marcel Dekker. 34. Cahn, J.W. and J.E. Hilliard, Free Energy of a Nonuniform System .1. Interfacial Free Energy. Journal of Chemical Physics, 1958. 28(2): p. 258-267. 35. Cahn, J.W., Phase separation by spinodal decomposition in isotropic systems. Journal of Chemical Physics, 1965. 42(1): p. 93-99. 36. Caneba, G.T. and D.S. Soong, Polymer Membrane Formation through the Thermal-Inversion Process .2. Mathematical-Modeling of Membrane-Structure Formation. Macromolecules, 1985. 18(12): p. 2545-2555. 37. Caneba, G.T. and D.S. Soong, Polymer Membrane Formation through the Thermal-Inversion Process .1. Experimental-Study of Membrane-Structure Formation. Macromolecules, 1985. 18(12): p. 2538-2545. 38. Barton, B.F., P.D. Graham, and A.J. McHugh, Dynamics of Spinodal Decomposition in Polymer Solutions near a Glass Transition. Macromolecules, 1998. 31(5): p. 1672-1679. 39. Hashimoto, T., M. Itakura, and H. Hasegawa, Late Stage Spinodal Decomposition of a Binary Polymer Mixture .1. Critical Test of Dynamic Scaling on Scattering Function. Journal of Chemical Physics, 1986. 85(10): p. 6118-6128. 40. Hashimoto, T., M. Itakura, and N. Shimidzu, Late Stage Spinodal Decomposition of a Binary Polymer Mixture .2. Scaling Analyses on Qm(Tau) and Im(Tau). Journal of Chemical Physics, 1986. 85(11): p. 6773-6786. 41. Ratke, L. and P.W. Voorhees, Growth and Coarsening : Ostwald ripening in material processing. 2002: Berlin ; New York : Springer. 42. Ostwald, W., Zeitschrift fur physikalische Chemie, 1901. 37. 43. Langer, J.S. and A.J. Schwartz, Kinetics of Nucleation in near-Critical Fluids. Physical Review A, 1980. 21(3): p. 948-958. 44. Cahn, J.W., On spinodal decomposition. Acta Metallurgica, 1961. 9(9): p. 795-801. 45. Cahn, J.W., Later Stages of Spinodal Decomposition and Beginnings of Particle Coarsening. Acta Metallurgica, 1966. 14(12): p. 1685-1692. 46. Aubert, J.H., Structural Coarsening of Demixed Polymer-solutions. Macromolecules, 1990. 23(5): p. 1446-1452. 47. Mcmaster, L.P., Aspects of Liquid-Liquid Phase-Transition Phenomena in Multicomponent Polymeric Systems. Advances in Chemistry Series, 1975(142): p. 43-65. 48. Velasco, E. and S. Toxvaerd, Computer-Simulation of Late-Stage Growth in Phase-Separating Binary-Mixtures - Critical and Off-Critical Quenches. Journal of Physics-Condensed Matter, 1994. 6: p. A205-A209. 49. Song, S.W. and J.M. Torkelson, Coarsening Effects on Microstructure Formation in Isopycnic Polymer-Solutions and Membranes Produced Via Thermally-Induced Phase-Separation. Macromolecules, 1994. 27(22): p. 6389-6397. 50. Song, S.W. and J.M. Torkelson, Coarsening Effects on the Formation of Microporous Membranes Produced Via Thermally-Induced Phase-Separation of Polystyrene-Cyclohexanol Solutions. Journal of Membrane Science, 1995. 98(3): p. 209-222. 51. Haas, C.K. and J.M. Torkelson, 2d Coarsening in Phase-Separated Polymer-Solutions - Dependence on Distance from Criticality. Physical Review Letters, 1995. 75(17): p. 3134-3137. 52. Haas, C.K. and J.M. Torkelson, Two-dimensional coarsening and phase separation in thin polymer solution films. Physical Review E, 1997. 55(3): p. 3191-3201. 53. Farrell, J.E. and O.T. Valls, Spinodal Decomposition in a 2-Dimensional Fluid Model - Heat, Sound, and Universality. Physical Review B, 1990. 42(4): p. 2353-2362. 54. Tanaka, H., Viscoelastic model of phase separation. Physical Review E, 1997. 56(4): p. 4451-4462. 55. Hess, W., Generalized Rouse Theory for Entangled Polymeric Liquids. Macromolecules, 1988. 21(8): p. 2620-2632. 56. Graessley, W., Advances in Polymer Science. Vol. 16. 1974: New York: Springer-Verlag. 57. Ferry, J.D., Viscoelastic Properties of Polymers. 1985 John Wiley. 58. Bueche, F., Viscosity, self-diffusion, and allied effects in solid polymers. Journal of Chemical Physics, 1952. 20(12): p. 1959-1964. 59. Fox, T.G. and P.J. Flory, Further Studies on the Melt Viscosity of Polyisobutylene. Journal of Physical and Colloid Chemistry, 1951. 55(2): p. 221-234. 60. Fox, T.G. and S. Loshaek, Isothermal Viscosity-Molecular Weight Dependence for Long Polymer Chains. Journal of Applied Physics, 1955. 26(9): p. 1080-1082. 61. Bueche, F., Viscosity of polymers in concentrated solution. Journal of Chemical Physics, 1956. 25(3): p. 599-600. 62. de Gennes, P.G., Scaling Concepts in Polymer Physics. 1979: Ithaca, N.Y. : Cornell University Press. 63. Cheng, K.R.M.a.J., Capillary Electrophoresis of Nucleic Acids, ed. p. 113. 2001, Totowa: Humana Press. 64. Tanaka, H. and T. Araki, Viscoelastic phase separation in soft matter: Numerical-simulation study on its physical mechanism. Chemical Engineering Science, 2006. 61(7): p. 2108-2141. 65. de Gennes, P.G., Reptation of a polymer chain in presence of fixed obstable. Journal of Chemical Physics, 1971. 55(2): p. 572-579. 66. Flory, P.J. and J. Rehner, Statistical Mechanics of Cross-Linked Polymer Networks II. Swelling. Journal of Chemical Physics, 1943. 11(11): p. 521-526. 67. Flory, P.J., Principles of Polymer Chemistry. 1953: Ithaca : Cornell University Press. 68. Flory, P.J., Statistical Mechanics of swelling of network structures. Journal of Chemical Physics, 1950. 18(1): p. 108-111. 69. Frenkel, D. and B. Smit, Understanding Molecular Simulation : from Algorithms to Applications 1996, San Diego Academic Press. 70. Haile, J.M., Molecular Dynamics Simulation : Elementary Methods. 1992, New York Wiley. 71. Leach, A.R., Molecular Modelling : Principles and Applications 2nd ed. 2001, Harlow, Essex, England ; Upper Saddle River, NJ Prentice Hall. 72. Groot, R.D., Applications of Dissipative Particle Dynamics. Lecture Notes in Physics 2004. 640: p. 5-38. 73. Nielsen, S.O., C. F. Lopez, G. Srinivas and M. L. Klein, Coarse grain models and the computer simulation of soft materials. Journal of Physics-Condensed Matter, 2004. 16(15): p. R481-R512. 74. Chen, S. and G.D. Doolen, Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 1998. 30: p. 329-364. 75. Altevogt, P., O. A. Evers, J. G. E. M. Fraaije, N. M. Maurits and B. A. C. van Vlimmeren The MesoDyn project: Software for Mesoscale Chemical Engineering. Journal of Molecular Structure-Theochem, 1999. 463(1-2): p. 139-143. 76. Fraaije, H., Fundamentals and applications of MesoDyn. Abstracts of Papers of the American Chemical Society, 2000. 220: p. U240-U240. 77. Frisch, U., Hasslacher, B and Pomeau, Y, Lattice gas automata for the Navier Stokes equations. Physical review letters, 1986. 56(14): p. 1505-1508. 78. Groot, R.D., T.J. Madden, and D.J. Tildesley, On the role of hydrodynamic interactions in block copolymer microphase separation. Journal of Chemical Physics, 1999. 110(19): p. 9739-9749. 79. Kong, Y., C. W. Manke, W. G. Madden and A. G. Schlijper Effect of solvent quality on the conformation and relaxation of polymers via dissipative particle dynamics. Journal of Chemical Physics, 1997. 107(2): p. 592-602. 80. Kong, Y., C. W. Manke, W. G. Madden and A. G. Schlijper Simulation of a Confined Polymer in Solution Using the Dissipative Particle Dynamics Method. International Journal of Thermophysics, 1994. 15(6): p. 1093-1101. 81. Pan, G. and C.W. Manke, Effects of solvent quality on the dynamics of polymer solutions simulated by dissipative particle dynamics. Journal of Rheology, 2002. 46(5): p. 1221-1237. 82. Jury, S.I., P. Bladon, S. Krishna and M. E. Cates, Tests of dynamical scaling in three-dimensional spinodal decomposition. Physical Review E, 1999. 59(3): p. R2535-R2538. 83. Groot, R.D., Mesoscopic simulation of polymer-surfactant aggregation. Langmuir, 2000. 16(19): p. 7493-7502. 84. Schlijper, A.G., P.J. Hoogerbrugge, and C.W. Manke, Computer-Simulation of Dilute Polymer-Solutions with the Dissipative Particle Dynamics Method. Journal of Rheology, 1995. 39(3): p. 567-579. 85. Spenley, N.A., Scaling laws for polymers in dissipative particle dynamics. Europhysics Letters, 2000. 49(4): p. 534-540. 86. Espanol, P. and P. Warren, Statistical-Mechanics of Dissipative Particle Dynamics. Europhysics Letters, 1995. 30(4): p. 191-196. 87. Marsh, C.A., G. Backx, and M.H. Ernst, Fokker-Planck-Boltzmann equation for dissipative particle dynamics. Europhysics Letters, 1997. 38(6): p. 411-415. 88. Marsh, C.A., G. Backx, and M.H. Ernst, Static and dynamic properties of dissipative particle dynamics. Physical Review E, 1997. 56(2): p. 1676-1691. 89. Visser, D.C., H.C.J. Hoefsloot, and P.D. Iedema, Modelling multi-viscosity systems with dissipative particle dynamics. Journal of Computational Physics, 2006. 214(2): p. 491-504. 90. http://rsb.info.nih.gov/ij/. 91. Tsai, F.J. and J.M. Torkelson, Roles of Phase-Separation Mechanism and Coarsening in the Formation of Poly(Methyl Methacrylate) Asymmetric Membranes. Macromolecules, 1990. 23(3): p. 775-784. 92. Takenaka, M., T. Izumitani, and T. Hashimoto, Spontaneous Pinning of Domain Growth during Spinodal Decomposition of Off-Critical Polymer Mixtures .2. Scaling Analysis. Journal of Chemical Physics, 1993. 98(4): p. 3528-3539. 93. Taniguchi, T. and A. Onuki, Network domain structure in viscoelastic phase separation. Physical Review Letters, 1996. 77(24): p. 4910-4913. 94. Rowlinson, J.S., Translation of Vanderwaals,Jd the Thermodynamic Theory of Capillarity under the Hypothesis of a Continuous Variation of Density. Journal of Statistical Physics, 1979. 20(2): p. 197-244. 95. Debye, P., Angular Dissymmetry of the Critical Opalescence in Liquid Mixtures. Journal of Chemical Physics, 1959. 31(3): p. 680-687. 96. McMaster, L.P., Copolymers,polymer blends and composites in advanced chemistry series. Vol. 142. 1975: Washington, DC:ACS. 97. Kumar, S. and R.G. Larson, Brownian dynamics simulations of flexible polymers with spring-spring repulsions. Journal of Chemical Physics, 2001. 114(15): p. 6937-6941. 98. Pan, G. and C.W. Manke, Developments toward simulation of entangled polymer melts by dissipative particle dynamics (DPD). International Journal of Modern Physics B, 2003. 17(1-2): p. 231-235. 99. Qian, H.J., Z. Y. Lu, L. J. Chen, Z. S. Li and C. C. Sun, Computer Simulation of Cyclic Block Copolymer Microphase Separation. Macromolecules, 2005. 38(4): p. 1395-1401. 100. Nikunen, P., I. Vattulainen, and M. Karttunen, Reptational dynamics in dissipative particle dynamics simulations of polymer melts. Physical Review E, 2007. 75(3): p. 1-7. 101. Gunton, J.D., San Miguel, M. and Sahni, P.S., Phase Transitions and Critical Phenomena, ed. C.a.L. Domb, J.L. Vol. 8. 1983 London, New York Academic Press. 102. Porod, G., Die Rontgenkleinwinkelstreuung Von Dichtgepackten Kolloiden Systemen .1. Kolloid-Zeitschrift and Zeitschrift Fur Polymere, 1951. 124(2): p.83-114. 103. Sariban, A. and K. Binder, Phase-Separation of Polymer Mixtures in the Presence of Solvent. Macromolecules, 1988. 21(3): p. 711-726. 104. Zhang, H.D., J.W. Zhang, and Y.L. Yang, Spinodal Decomposition in Asymmetric Polymer Mixtures. Macromolecular Theory and Simulations, 1995. 4(6): p. 1001-1013. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40486 | - |
dc.description.abstract | 本研究利用適用於微米尺度的模擬方法-耗散粒子動力學,探討增加高分子溶液中的高分子鏈長以及高分子鏈段間的彈性係數,如何影響高分子溶液經過熱誘導式相分離後的高分子濃度振盪、高分子結構變化、以及高分子富相尺寸成長等動態性質,以提供有利於控制高分子薄膜成膜結構的資訊。
模擬結果顯示,在稀薄高分子溶液的spinodal decomposition相分離中,高分子富相結構由初期的雙連續結構,因進行界面能量釋放而轉變為球狀結構的過程相對快速。而在亞濃高分子溶液的spinodal decomposition中,雙連續結構則能維持較長時間,當高分子鏈段長度增加時,形成的雙連續結構較為緻密;而透過提高分子鏈段間的彈簧係數以增加高分子鏈鍵強度後,使高分子運動進行局部的合併,進而產生局部高分子碎片的結構。在相分離的造成的濃度振盪方面,提高高分子鏈鍵強度會抑制相分離進行,而提高高分子鏈長及高分子鏈鍵強度,皆會減緩在相分離階段高分子富相及高分子貧相兩相間的界面張力釋放。在高分子的合併過程中,高分子富相的尺寸與相分離時間的關係遵守冪次法則,本研究透過分析其成長指數探討鏈長及鍵強度對合併機制的影響,當高分子鏈較短且鍵強度較低時,高分子富相的合併初期以成長指數1/3進行成長,表示合併是透過擴散進行,而後期成長指數轉換為2/3,說明後期的合併行為由界面張力引起的流動。高分子鏈長的增加使前期擴散主導階段的高分子富相尺寸降低,成長指數降為1/4,說明鏈長的提高將限制高分子以爬行方式進行運動進而減慢高分子的合併,而高分子鏈間鍵強度的增加則使擴散主導階段的成長指數降低至1/5,代表鏈段的鍵強度增加將牽制相分離時的高分子運動;此外,鏈長及鍵強度的改變不影響合併行為後期的流動階段成長機制,代表在流動主導的合併過程中,是由界面張力的釋放主導,而無法顯現鏈長或鍵強度對合併行為的影響。當鏈長及鍵強度同時提升時,相分離受到高分子在亞濃溶液中形成的網狀結構所抑制,利用Frenkel-Flory-Rehner理論,說明高分子網狀結構在溶液中形成的鏈糾結使需要發生相分離的高分子與溶劑間的作用力參數提高。在合併過程中,當鏈長及鍵強度同時提高時,會減緩由擴散機制主導轉為流動主導的轉換時間。 本研究並探討提高高分子與溶液間的作用力參數對於鏈糾結效應的影響,隨著作用力參數的提高,高分子鏈糾結對相分離動態的影響相對減輕,相分離受到熱力學驅動力主導,使得鏈糾結效應對相分離動態的影響較低。 | zh_TW |
dc.description.abstract | Dissipative particle dynamics (DPD) was employed to perform three- dimensional simulations to investigate the phase separation dynamics of polymer solutions with different polymer chain length and bond strength. How the chain length and bond strength influenced the concentration fluctuation, morphology evolution and coarsening mechanism of polymer-rich regions during the phase separation were presented. The results show that phase separation dynamics was suppressed by the chain length effects and the hindrance effect resulted from enhanced spring between polymer segments. On morphology evolution, the chain length effect sustained the bicontinuous structure, and the bond strength effect due to the increase of spring constant resulted in local aggregation of polymer-rich regions..
The growth of polymer-rich domains was analyzed to study the effects of chain length and bond strength on coarsening mechanism. For the polymer solution composed of shorter and more flexible chains, a two–stage coarsening was observed with the crossover of the domain growth exponent from 1/3 to 2/3 during the course of phase separation. The crossover reflected that the growth mechanism altered from diffusion to interfacial-tension driven flow. When the chain flexibility was kept the same but the chain length increased, the growth exponent was reduced to 1/4 in the diffusion-dominating coarsening regime, while effects on the growth exponent in the flow–dominating regime were absent. Besides, the concentration fluctuation as well as the dissipation of interfacial energy during phase separation was suppressed. When the chain length was kept short but the bond strength was enhanced by increasing the spring constant between the polymer segments, the growth exponent approached 1/5 in the diffusion-dominating regime. Nevertheless, the entanglement effects in the flow-dominating coarsening regime were not remarkable. The chain length effect slowed down the domain growth, which could be explained by that polymer chains could only perform reptation when chain entanglements occurred. Moreover, when both the effects of chain length and bond strength were enhanced, polymer networks composed of longer chains with stronger bond strength imposed an energy barrier for phase separation to occur, which corresponded to the Frenkel-Flory-Rehner hypothesis. As a result, the polymer solution with longer chains with stronger bond strength can only undergo phase separation when a larger quench depth was employed to initiate the phase separation, reflecting that the entanglement effects derived from the increase of chain length and bond strength were alleviated with the deeper quench. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T16:49:02Z (GMT). No. of bitstreams: 1 ntu-97-F90524058-1.pdf: 5613434 bytes, checksum: 782e4efb7566a2452e3a4baabc18a47e (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 摘 要 I
ABSTRACT III CONTENTS V FIGURE LIST VIII TABLE LIST XV Chapter I Introduction 1 1.1 General introduction 1 1.2 Dynamics in phase separation of polymer solutions 2 1.3 Outlines of work 5 1.4 References 7 Chapter II Literature Survey 11 2.1 Thermally induced phase separation (TIPS) of polymer solution 11 2.1.1 Phase separation mechanisms in TIPS 12 2.1.2 The early stage growth: Cahn-Hilliard theory 17 2.1.3 The intermediate stage growth 20 2.1.4 The late stage growth and coarsening theories 21 2.1.4.1 Evaporation Condensation mechanism 23 2.1.4.2 Brownian-coagulation mechanism 25 2.1.4.3 Hydrodynamic flow 27 2.2 Experimental evidences of viscoelastic phase separation 30 2.3 Polymer entanglements 31 2.3.1 Concepts of entanglements 31 2.3.2 Reptation theory for entangled polymers 33 2.4 Models of viscoelastic phase separation 36 2.5 Entanglements effects on coarsening 40 2.6 References 42 Chapter III Simulation Methods 49 3.1 Mesoscale simulation methods 49 3.2 Dissipative particle dynamics theory 52 3.3 Forces in DPD 54 3.4 DPD simulation details in the present study 59 3.5 Verification of the definition of the polymer-rich domain 62 3.6 References 65 Chapter IV Polymer Concentration and Chain Length Effects on Phase Separation Dynamics 69 4.1 Phase separation dynamics in dilute and semidilute polymer solution 69 4.1.1 Morphology evolution in phase-separated dilute polymer solution 71 4.1.2 Morphology evolution of semidilute polymer solution 73 4.2 Chain length effects on phase separation dynamics in the semidilute polymer solution 76 4.2.1 Chain length effects on the evolution of concentration fluctuation 76 4.2.2 Chain length effects on morphology evolution during coarsening 83 4.2.3 Chain length effects on the domain growth during coarsening 84 4.3 Interplay between the quench depth and the chain length effects 94 4.3.1 Morphological evolution analysis 94 4.3.2 Coarsening mechanism of polymer-rich phase 95 4.4 References 98 Chapter V Bond Strength Effects on Phase Separation Dynamics 101 5.1 Bond strength effects on the phase separation dynamics in semidilute polymer solution 101 5.1.1 Bond strength effects on the evolution of concentration distribution 102 5.1.2 Inhibition of the onset of phase separation 108 5.2 Bond strength effects on the morphology evolution during coarsening 110 5.3 Bond strength effects on the coarsening mechanism of polymer-rich phase 113 5.4 Interplay between the quench depth and bond strength effects 120 5.4.1 Morphological evolution analysis 121 5.4.2 Coarsening mechanism of polymer-rich phase 123 5.5 References 126 Chapter VI Conclusions 127 Appendix A The Alternative Algorithm to Evaluate the Size of Polymer-rich Domains 129 Appendix B Determining the scale factor of the DPD system 139 | |
dc.language.iso | en | |
dc.title | 高分子鏈長及鍵強度對熱誘導式相分離動力學之影響-耗散粒子動力學模擬 | zh_TW |
dc.title | Effects of Chain Length and Bond Strength on Phase Separation Dynamics-a Dissipative Particle Dynamics Simulation Analysis | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 諶玉真(Yu-Jane Sheng),林祥泰(Shiang-Tai Lin),曹恆光(Heng-Kwong Tsao),鄭國忠,黃慶怡,張雍 | |
dc.subject.keyword | 耗散粒子動力學,高分子薄膜成膜機制,相分離動態機制,合併行為,高分子鏈糾結, | zh_TW |
dc.subject.keyword | Dissipative particle dynamics,polymer membrane formation,phase separation dynamics,coarsening,polymer entanglements, | en |
dc.relation.page | 141 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-31 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
Appears in Collections: | 化學工程學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-97-1.pdf Restricted Access | 5.48 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.