Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40479
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王兆麟
dc.contributor.authorWen-Li Tsengen
dc.contributor.author曾雯莉zh_TW
dc.date.accessioned2021-06-14T16:48:50Z-
dc.date.available2008-08-05
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-31
dc.identifier.citation1. Accadbled F, Laffosse JM, Ambard D, et al. Influence of location, fluid flow direction, and tissue maturity on the macroscopic permeability of vertebral end plates. Spine 2008;33:612-9.
2. Antoniou J, Goudsouzian NM, Heathfield TF, et al. The human lumbar endplate. Evidence of changes in biosynthesis and denaturation of the extracellular matrix with growth, maturation, aging, and degeneration. Spine 1996;21:1153-61.
3. Ayotte DC, Ito K, Tepic S. Direction-dependent resistance to flow in the endplate of the intervertebral disc: an ex vivo study. J Orthop Res 2001;19:1073-7.
4. Bernick S, Cailliet R. Vertebral end-plate changes with aging of human vertebrae. Spine 1982;7:97-102.
5. Broberg KB. On the mechanical behaviour of intervertebral discs. Spine 1983;8:151-65.
6. Chandraraj S, Briggs CA, Opeskin K. Disc herniations in the young and end-plate vascularity. Clin Anat 1998;11:171-6.
7. Cheng CC, Ordway NR, Zhang X, et al. Loss of cervical endplate integrity following minimal surface preparation. Spine 2007;32:1852-5.
8. Cinotti G, Della Rocca C, Romeo S, et al. Degenerative changes of porcine intervertebral disc induced by vertebral endplate injuries. Spine 2005;30:174-80.
9. Edwards WT, Zheng Y, Ferrara LA, et al. Structural features and thickness of the vertebral cortex in the thoracolumbar spine. Spine 2001;26:218-25.
10. Grant JP, Oxland TR, Dvorak MF. Mapping the structural properties of the lumbosacral vertebral endplates. Spine 2001;26:889-96.
11. Grosland NM, Goel VK. Vertebral endplate morphology follows bone remodeling principles. Spine 2007;32:E667-73.
12. Hansson T, Keller T, Jonson R. Fatigue fracture morphology in human lumbar motion segments. J Spinal Disord 1988;1:33-8.
13. Hansson TH, Keller TS, Spengler DM. Mechanical behavior of the human lumbar spine. II. Fatigue strength during dynamic compressive loading. J Orthop Res 1987;5:479-87.
14. Holm S, Maroudas A, Urban JP, et al. Nutrition of the intervertebral disc: solute transport and metabolism. Connect Tissue Res 1981;8:101-19.
15. Jensen KS, Mosekilde L. A model of vertebral trabecular bone architecture and its mechanical properties. Bone 1990;11:417-23.
16. Kokkonen SM, Kurunlahti M, Tervonen O, et al. Endplate degeneration observed on magnetic resonance imaging of the lumbar spine: correlation with pain provocation and disc changes observed on computed tomography diskography. Spine 2002;27:2274-8.
17. Kurowski P, Kubo A. The relationship of degeneration of the intervertebral disc to mechanical loading conditions on lumbar vertebrae. Spine 1986;11:726-31.
18. Labrom RD, Tan JS, Reilly CW, et al. The effect of interbody cage positioning on lumbosacral vertebral endplate failure in compression. Spine 2005;30:E556-61.
19. Leidig-Bruckner G, Limberg B, Felsenberg D, et al. Sex difference in the validity of vertebral deformities as an index of prevalent vertebral osteoporotic fractures: a population survey of older men and women. Osteoporos Int 2000;11:102-19.
20. Lim TH, Kwon H, Jeon CH, et al. Effect of endplate conditions and bone mineral density on the compressive strength of the graft-endplate interface in anterior cervical spine fusion. Spine 2001;26:951-6.
21. Nachemson A. Some mechanical properties of the lumbar intervertebral discs. Bull Hosp Joint Dis 1962;23:130-43.
22. Nachemson A, Lewin T, Maroudas A, et al. In vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs. Acta Orthop Scand 1970;41:589-607.
23. Ogata K, Whiteside LA. 1980 Volvo award winner in basic science. Nutritional pathways of the intervertebral disc. An experimental study using hydrogen washout technique. Spine 1981;6:211-6.
24. Ordway NR, Lu YM, Zhang X, et al. Correlation of cervical endplate strength with CT measured subchondral bone density. Eur Spine J 2007;16:2104-9.
25. Pacifici R, Rupich RC, Avioli LV. Vertebral cortical bone mass measurement by a new quantitative computer tomography method: correlations with vertebral trabecular bone measurements. Calcif Tissue Int 1990;47:215-20.
26. Polga DJ, Beaubien BP, Kallemeier PM, et al. Measurement of in vivo intradiscal pressure in healthy thoracic intervertebral discs. Spine 2004;29:1320-4.
27. Pooni JS, Hukins DW, Harris PF, et al. Comparison of the structure of human intervertebral discs in the cervical, thoracic and lumbar regions of the spine. Surg Radiol Anat 1986;8:175-82.
28. Przybyla A, Pollintine P, Bedzinski R, et al. Outer annulus tears have less effect than endplate fracture on stress distributions inside intervertebral discs: relevance to disc degeneration. Clin Biomech (Bristol, Avon) 2006;21:1013-9.
29. Roberts S, Menage J, Urban JP. Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine 1989;14:166-74.
30. Roberts S, Urban JP, Evans H, et al. Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine 1996;21:415-20.
31. Schneider PG, Oyen R. [Surgical replacement of the intervertebral disc. First communication: replacement of lumbar discs with silicon-rubber. Theoretical and experimental investigations (author's transl)]. Z Orthop Ihre Grenzgeb 1974;112:1078-86.
32. Truumees E, Demetropoulos CK, Yang KH, et al. Failure of human cervical endplates: a cadaveric experimental model. Spine 2003;28:2204-8.
33. Urban JP, Smith S, Fairbank JC. Nutrition of the intervertebral disc. Spine 2004;29:2700-9.
34. Wilke HJ, Neef P, Caimi M, et al. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 1999;24:755-62.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40479-
dc.description.abstract目的:分析椎終板的靜水壓抗壓強度與破壞模式。
背景簡介:將椎間核替代物或可刺激細胞再生的物質以注射的方式注入椎間核,是新一代治療椎間盤退化的方法之一。在注射液狀物體時,需了解椎終板的靜水壓抗壓強度與液體在椎間盤內的擴散模式,才可決定此治療方式的有效性及適合此方法的病人篩選準則。
材料與方法:由五副人體脊椎取得15個胸椎(T11-T12)與腰椎(L1-L5),平均年齡為86(5)歲。利用「椎間盤體積-壓力關係量測」儀器將顯影劑注射入椎間盤,得到椎終板靜水壓抗壓強度,並以電腦斷層掃描儀拍攝注射過程。以影像分析程式,將電腦斷層切片重建成3D影像後,分析顯影劑在試樣的擴散模式,以線性回歸分析椎終板靜水壓抗壓強度與骨質密度關係。將試樣沿著冠狀切面,做厚度為1mm的切片,觀察顯影劑洩漏位置與椎終板退化程度的關聯性。
結果:由電腦斷層掃描影像量測椎終板厚度,得到中間最薄(1.03±0.14mm),周圍逐漸增厚(1.26±0.06mm),兩者有顯著性差異,並可觀察到顯影劑主要從椎間核或椎間環裂縫往外擴散。之後再由椎終板流入椎骨或由椎間環洩漏。其中椎終板(0.18±0.17MPa)比椎間環(0.27±0.21MPa)靜水壓抗壓強度低。椎終板與椎間環的靜水壓抗壓強度與骨質密度呈正相關。從電腦斷層掃描影像與切片圖像,發現顯影劑易穿透椎終板破裂處或鈣化處而流入椎骨。從電腦斷層掃描可觀察到椎終板與椎間盤界面為不連續的鋸齒狀線,該不連續線可能表示椎終板的退化。
結論:椎終板與椎間環的靜水壓抗壓強度與骨質密度呈正相關。在退化的椎間盤內,顯影劑不會均勻擴散,會以裂縫擴散模式擴散,並由椎終板破裂處或鈣化處流入椎骨。
zh_TW
dc.description.abstractObjective: To evaluate the strength of hydrostatic pressure of endplate and the spreading pattern of contrast agent in the disc.
Summary of Background Data: One of the disc degeneration therapies is to inject the biomaterials, which replace or promote regeneration of nucleus into the nucleus pulposus. To determine the efficacy of this therapy and the criteria of patient selection, it is important to evaluate the hydrostatic pressure strength of endplate and the injection pattern of contrast agent in the disc.
Methods:Fifteen discs from 5 cadaver thoracic and lumbar spines (aged 77-92 years, mean age: 86 years) were injected with contrast agent using the quantitative discomanometry (QD) apparatus. The injection process was scanned with cine-CT. The endplate leakage pressure, spreading pattern of contrast agent in the disc, and the correlation between leakage pressure and bone mineral density (BMD) were analyzed. To observe the grade of endplate degeneration and the leakage site of the contrast agent, the discs were sectioned along the coronal plane, and macroscopic photographed.
Result:The center region of endplate (1.03±0.14mm) was the thinner than the one of periphery region (1.26±0.06mm). Spreading patterns of contrast agent in the disc included “nucleus space expansion” and “anular fissure formation”. The contrast agent was found to leak through the endplate and the anulus fibrosis. The endplate leakage pressure (0.18±0.17MPa) was lower than the anular leakage pressure (0.27±0.21MPa). The endplate and anular leakage pressure were found positively correlated with BMD. Comparing CT images to macroscopic photographies, the contrast agent leaked through the fissure and the sclerosis site of endplate. The discontinuous lines between endplate and disc in CT images may be the indication of endplate degeneration.
Conclusion:Both of the endplate leakage pressure and the anular leakage pressure were correlated positively with BMD. The contrast agent spread through the anular fissure of disc, and leaked through the fissures and the sclerosis site of endplate.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:48:50Z (GMT). No. of bitstreams: 1
ntu-97-R95548007-1.pdf: 3020267 bytes, checksum: 451dec54f15a624897babdd60ac34e83 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents致謝 iii
中文摘要 iv
英文摘要 v
第一章 前言 1
1.1 椎終板的構造與功能 1
1.2 椎終板的損傷 1
1.3 椎終板損傷的後遺症 2
1.4 椎終板的力學性質 3
1.5 實驗目的 6
第二章 材料與方法 7
2.1 試樣準備 7
2.1.1 人體屍骨試樣 7
2.1.2 試樣準備 8
2.1.3 試樣解凍 8
2.2 實驗儀器 8
2.2.1 電腦斷層掃描(Computed Tomography , CT) 8
2.2.2 骨質密度測定儀( Dual Energy X-ray Absorptiometry, DEXA) 8
2.2.3 椎間盤體積-壓力關係量測儀器 9
2.2.4 鑽石切割器 9
2.3 實驗流程 10
2.4 數據與影像分析 12
第三章 結果 15
3.1 CT影像分析 15
3.1.1 以CT影像量測椎終板厚度 15
3.1.2 橫切面影像分析 15
3.1.3 冠狀切面影像分析 16
3.2 試樣切片與CT影像對應 17
3.2.1 椎間盤之切片與CT影像對應 18
3.2.2 椎終板之切片與CT影像對應 19
3.3 靜水壓抗壓強度 27
第四章 討論與結論 31
4.1 在CT室內進行靜水壓抗壓強度測試之討論 31
4.2 以CT影像量測椎終板厚度之討論 31
4.3 CT影像分析之討論 31
4.5 靜水壓抗壓強度與CT影像對應之討論 32
4.6 靜水壓抗壓強度與骨質密度(BMD)關係之討論 32
4.7 實驗限制 33
4.8 結論 33
4.9 未來展望 33
參考文獻 34
dc.language.isozh-TW
dc.subject靜水壓zh_TW
dc.subject椎終板zh_TW
dc.subject靜水壓抗壓強度測試zh_TW
dc.subject電腦斷層掃描影像zh_TW
dc.subject骨密度zh_TW
dc.subjectcomputed tomographyen
dc.subjectBMDen
dc.subjectendplateen
dc.subjecthydrostatic pressureen
dc.subjectquantitative discomanometryen
dc.title人體老化脊椎終板之靜水壓抗壓強度與破壞模式分析zh_TW
dc.titleThe Failure Strength and Patterns of Human Degenerated Intervertebral Disc in Resisting the Hydrostatic Pressureen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林晉,莊仕勇,趙振綱,蘇芳慶
dc.subject.keyword椎終板,靜水壓抗壓強度測試,電腦斷層掃描影像,骨密度,靜水壓,zh_TW
dc.subject.keywordendplate,quantitative discomanometry,computed tomography,BMD,hydrostatic pressure,en
dc.relation.page36
dc.rights.note有償授權
dc.date.accepted2008-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
2.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved