請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40457完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李雨 | |
| dc.contributor.author | Ching-Wen Huang | en |
| dc.contributor.author | 黃敬文 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:48:10Z | - |
| dc.date.available | 2010-08-04 | |
| dc.date.copyright | 2008-08-04 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-29 | |
| dc.identifier.citation | [1] Asami K., T. Hanai and N. Koizumi, “Dielectric approach to suspensions of ellipsoidal particles covered with a shell in particular reference to biological Cells”, Jap. J. Appl. Phys., vol. 19, 359-365, 1980.
[2] Beving H., L. E. G. Eriksson, C. L. Davey and D. B. Kell, ‘‘Dielectric properties of human blood and erythrocytes at radio frequencies (0.2-10MHz); dependence on cell volume fraction and medium composition’’, EUR. BIOPHYS. J., vol.23, 207-215, 1994. [3] Black J. and G. Hastings, “Handbook of biomaterial properties”, Chapman & Hall, 1998. [4] Bordi F., C. Cametti, R. Misasi, and R. De Persio, “Conductometric properties of human erythrocyte membranes: dependence on haematocrit and alkali metal ions of the suspending medium”, Eur. Biophys. J., vol.26, 215-225, 1997. [5] Chen M. C., ‘‘Experimental study pf traveling wave dielectrophoretic pump’’, Master thesis, Institute of Applied Mechanics, National Taiwan University, 2006. [6] Fuhr G.., T Schnelle and B. Wagner, ‘‘Traveling wave-driven microfabricated electrohydrodynamic pumps for liquids’’, J. Micromech. Microeng., vol.4, 217-226, 1994. [7] H. Kawamoto, K. Seki and N. Kuromiya, ‘‘Mechanism of traveling-wave transport of particles’’, J. Phys. D: Appl. Phys., vol.39, 1249-1256, 2006. [8] Hagedorn R., G. Fuhr, T. Muller and J. Gimsa, ‘‘Traveling-wave dielectrophoresis of microparticles’’, Electrophoresis, vol.13, 49-54, 1992. [9] Huang Y., X.-B. Wang, J. A. Tame and R. Pethig, ‘‘Electrokinetic behaviors of colloidal particles in traveling electric fields: studies using yeast cells’’, J. Phys. D: Appl. Phys., vol.26, 1528-1535, 1993. [10] Hughes M. P., “Nanoelectromechanics in Engineering and Biology”, CRC PRESS, 2002 [11] Hughes M. P., R. Pethig and X.-B. Wang, ‘‘Dielectrophoretic forces on particles in travelling electric fields’’, J. Phys. D: Appl. Phys., vol.29, 474-482, 1996. [12] Jimsa J., “A comprehensive approach to electro-orientation, electrodeformation, dielectrophoresis, and electrorotation of ellipsoidal particles and biological cells”, Bioelectrochemistry, vol. 54, 23-31, 2001 [13] Johann R. M., “Cell trapping in microfluidic chips”, Anal Bioanal Chem, vol.385, 408-412, 2006. [14] Jones T. B., ‘‘Electromechanics of particles’’, Cambridge University Press, 1995. [15] Kawamoto H., S. Hayashi, ‘‘Fundamental investigation on electrostatic traveling wave transport of a liquid drop’’, J. Phys. D: Appl. Phys., vol.39, 418-423, 2006. [16] Masuda S., Kamimura T., ‘‘Approximate methods for calculating a nonuniform traveling field’’, J. Electrostst., vol.1, 351-370, 1975. [17] Masuda S., Washizu M. and Iwadare M., ‘‘Separation of small particles suspended in liquid by nonuniform traveling field’’, IEEE Trans. Ind. Appl. IN, vol.23, 474-480, 1987. [18] Masuda S., M. Washizu and M. Iwadare, ‘‘Movement of blood cells in liquid by nonuniform traveling field’’, IEEE Trans. Ind. Appl. IN, vol.24, 217-222, 1988. [19] Mohapatra S. N. and D. W. Hill, ‘‘The changes in blood resistivity with hematocrit and temperature’’, Europ. J. Intensive Care Medicine, vol.1, 153-162, 1975. [20] Muller T., W. M. Arnold, T. Schnelle, R. Hagedorn, G. Fuhr and U. Zimmermann, ‘‘A traveling-wave micropump for aqueous-solutions-comparison of 1-G and μ-G results’’, Electrophoresis, vol.14, 764-771, 1993. [21] Nguyen N. T., X. Huang and T. K. Chuan, “MEMS-Micropumps: A review”, Trans. ASME, vol.124, 384-392, 2002. [22] Pohl H. A. and J. S. Crane, ‘‘Dielectrophoresis of cells’’, Biophys. J., vol.11, 711-727, 1971. [23] Raffel M., C. E. Willert, J. Kompenhans, “Particle image velocimetry – a practical guide”, Springer, 1998. [24] Wang X.-B., Y. Huang, F. F. Becker and P. R. C. Gascoyne, ‘‘A unified theory of dielectrophoresis and traveling wave dielectrophoresis’’, J. Phys. D: Appl. Phys., vol.27, 1571-1574, 1994. [25] Yang C. Y. and U. Lei, “Quasistatic force and torque on ellipsoidal particles under generalized dielectrophoresis”, J. Appl. Phys., vol. 102, 094702, 2007. [26] 謝鴻彥 (Hsieh, H. Y.), “以旅波介電泳分離全血中血球模擬”, Master thesis, Institute of Applied Mechanics, National Taiwan University, 2003. [27] 孫志璿 (Sun, C. S.), “以旅波介電泳驅動的二項懸浮槽流的數值研究”, Master thesis, Institute of Applied Mechanics, National Taiwan University, 2004. [28] 林永錡 (Lin, Y. C.), “微流道中以旅波介電泳方式驅動的二相懸浮流”, Master thesis, Institute of Applied Mechanics, National Taiwan University, 2005 [29] 葉祐銘 (Yeh, Y. M.), “旅波介電泳幫浦的設計分析”, Master thesis, Institute of Applied Mechanics, National Taiwan University, 2007 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40457 | - |
| dc.description.abstract | 本論文以實驗方式探討輸送二相懸浮流(本文用人類血液)之旅波式介電泳幫浦。本幫浦基本上為一直微流道,流道截面為矩形,在其一壁面上一段區域鋪有枕木狀電極,當施以四(或三)個相位差為一組之交流電訊號於電極,傳統式負介電泳將紅血球細胞抬昇遠離電極表面,而旅波式介電泳則驅動紅血球往相位遞增方向前進。隨著血球的移動,會透過黏滯力帶動血漿,經過流力與介電泳力的暫態交互作用,如條件適當,血液可被順利輸送。
我們利用微機電技術來製造該幫浦,並做詳細的參數探討,其中包括操作電壓、頻率、電極間的相位差、電極數量、流道幾何尺寸,以及增強電極的添加與否。在我們的實驗中,人血在流道長度1mm、高度40μm、24根電極、電壓5伏特和20MHz的四相正弦波訊號驅動之下,血球可以15μm/s的速度被輸送。如在原有的電極前加上兩根輔助電極,我們能將流速提升2.4倍。 | zh_TW |
| dc.description.abstract | This thesis studies experimentally the traveling wave dielectrophoretic pump for delivering two-phase suspension medium, using human blood as an example. The pump is essentially a rectangular straight micro channel with a crosstie type electrode array built on one wall and operated under ac voltage with phase shift at neighboring electrodes. Both the conventional and traveling wave dielectrophoresis are generated. The negative conventional dielectrophoretic force repels the red blood cells from the electrode surface and the traveling wave dielectrophoretic force drives the cells along the direction of increasing phase. As the cells move, they drag their neighboring fluid (plasma), and the whole blood is delivered, after some sophisticated interaction of dielectrophoresis and fluid mechanics.
The pump was fabricated using MEMS techniques and tested with different parameters of experiment, including the applied voltage, the operating frequency, the phase shift between neighboring electrodes, the number of electrodes, the dimensions of the channel, and the type of enhanced electrodes. It is found that the pump can attain a maximum pumping velocity at an intermediate frequency (about 20 MHz) and channel height (about 40 μm) with four phase signals. The steady average cell velocity can attain 15 μm/s for a pump with 1mm length and 24 electrodes, and operated with a four phase signal at 5 volts and 20 MHz. The pumping performance can be enhanced 2.4 times if two additional electrodes with appropriate applied voltages are added before the regular twDEP array. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:48:10Z (GMT). No. of bitstreams: 1 ntu-97-R95543003-1.pdf: 8595986 bytes, checksum: 599e633bc12bd1c832305fcc373c82ea (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | Acknowledgements ii
中文摘要 iii Abstract iv Chapter 1 Introduction 1 1.1 Research background and motivation 1 1.2 Literature review 5 1.3 Objective 8 1.4 Outline of the thesis 9 Chapter 2 Theoretical background 11 2.1 Generalized dielectrophoresis 11 2.2 Resistive force 15 2.2.1 Conventional dielectrophoretic force 15 2.2.2 Viscous drag force 16 Chapter 3 Experiments 18 3.1 System fabrication 18 3.1.1 Electrodes 18 3.1.2 Channel 19 3.1.3 Assembly the glass with electrode and the PDMS channel 20 3.2 Equipments 21 3.2.1 Blood storage 21 3.2.2 Function generator for power supply 21 3.2.3 Optical devices and data recording 21 3.2.4 Conductivity measurement 22 3.2.5 Velocity measurement 22 3.3 Experimental setup 23 Chapter 4 Results 24 4.1 Conductivity of human blood 24 4.2 Role of conventional dielectrophoresis in the twDEP pumping 25 4.3 Transient period of pumping 27 4.4 twDEP pumping 30 4.4.1 Different numbers of electrodes 31 4.4.2 Different signals (voltage, frequency and phase shift) 32 4.4.3 Different dimensions of the channel 35 4.5 Enhanced electrodes 35 Chapter 5 Conclusion and future work 37 5.1 Conclusion 37 5.2 Future prospects 38 References 40 Figures 43 Tables 79 Appendix 81 Appendix A. The blood properties 81 Appendix B. The certificate of blood source 82 Appendix C. Fabrication process 83 Appendix D. Particle image velocimetry 84 | |
| dc.language.iso | en | |
| dc.subject | 血液輸送 | zh_TW |
| dc.subject | 傳統式介電泳 | zh_TW |
| dc.subject | 旅波式介電泳 | zh_TW |
| dc.subject | 微幫浦 | zh_TW |
| dc.subject | micro-pump | en |
| dc.subject | blood delivery | en |
| dc.subject | Conventional dielectrophoresis | en |
| dc.subject | traveling wave dielectrophoresis | en |
| dc.title | 用以輸送血液之旅波式介電泳幫浦 | zh_TW |
| dc.title | Traveling Wave Dielectrophoretic Pump for Blood Delivery | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡文聰,楊政穎 | |
| dc.subject.keyword | 傳統式介電泳,旅波式介電泳,微幫浦,血液輸送, | zh_TW |
| dc.subject.keyword | Conventional dielectrophoresis,traveling wave dielectrophoresis,micro-pump,blood delivery, | en |
| dc.relation.page | 41 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 8.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
