Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40455
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡志宏
dc.contributor.authorKai-Yuen Chengen
dc.contributor.author鄭凱元zh_TW
dc.date.accessioned2021-06-14T16:48:07Z-
dc.date.available2008-08-04
dc.date.copyright2008-08-04
dc.date.issued2008
dc.date.submitted2008-07-29
dc.identifier.citation[1] J. Lorincz, D. Begusic, “Physical layer analysis of emerging IEEE 802.11n WLAN standard,” Proceedings of the 8th International Conference on Advanced Communication Technology, vol. 1, pp. 189-194, Feb. 2006
[2] L. X. Cai, X. Ling, X. Shen, J. W. Mark, H. Long, ”Capacity analysis of enhanced MAC in IEEE 802.11n, ” Proceedings of the first International Conference on Communications and Networking in China, pp.1-5, Oct. 2006
[3] Y. Xiao, ”IEEE 802.11n: Enhancements for higher throughput in wireless LANs” Wireless Communications, vol. 12, pp. 82-91, Dec. 2005
[4] J. Tang, G. Morabito, I. F. Akyildiz, M. Johnson, 'RCS: A rate control scheme for real-time traffic in networks with high bandwidth-delay products and high bit error rates', Proceeding of the 20th Annual Joint Conference on the IEEE Computer and Communications Societies, INFOCOM, vol. 1, pp. 114-122, April. 2001
[5] D. H. Hoang, D. Reschke, “An adaptive control scheme for multimedia flows over wireless networks,” Proceedings of the 5th Biannual on World Automation Congress, vol. 13, pp. 325-330, 2002
[6] P. van Beek, S. Deshpande, H. Pan, I. Sezan, “Adaptive streaming of high-quality video over wireless LANs,” Visual Communications and Image Processing 2004 (VCIP 2004), Proc. SPIE, vol. 5308, pp. 647-660
[7] X. Tong, W. Gao, Q. Huang, “A novel rate control scheme for video streaming over wireless networks,” Proceedings of the 3rd International Conference on Image and Graphics, pp. 369-372, Dec. 2004
[8] M. U. Demircin, P. van Beek, “Bandwidth estimation and robust video streaming over 802.11e wireless LANs,“ Proceedings of IEEE International Conference on Multimedia and Expo, pp. 1250-1253, July. 2005
[9] H. K. Lee, V. Hall, K. H. Yum, K. I. Kim, E. J. Kim; “Bandwidth estimation in wireless LANs for multimedia streaming services,” Proceedings of IEEE International Conference on Multimedia and Expo, pp. 1181-1184, July. 2006
[10] R. Prasad, C. Dovrolis, M. Murray, K. Claffy, “Bandwidth estimation: metrics, measurement techniques, and tools” IEEE Network, vol. 17, pp. 27-35, Nov.-Dec. 2003
[11] V. D. Hoang, Z. Shao, M. Fujise, “A New solution to estimate the available Bandwidth in MANETs,” Proceedings of IEEE 63rd Vehicular Technology Conference, 2006 on VTC 2006-Spring, vol. 2, pp. 653-657, May. 2006
[12] 鐘政峰 “On the estimation method of available bandwidth in wireless Channels” Master thesis of Graduate Institute of Communication Engineering, National Taiwan University, June. 2002
[13] A. Johnsson, M. Bjorkman, B. Melander, “An analysis of active end-to-end bandwidth measurements in wireless networks,” Proceedings of 4th IEEE/IFIP Workshop on End-to-End Monitoring Techniques and Services, pp. 74-81, April 2006
[14] S. Biaz, N. Vaidya, “Discriminating congestion losses from wireless losses using inter-arrival times at the receiver,” Proceedings on Application Specific Systems and Software Engineering and Technoloy, pp. 10-17, March 1999
[15] S. Cen, P. C. Cosman, G. M. Voelker, “End-to-end differentiation of congestion and wireless losses,” Proceedings of ACM Multimedia Computing and Networking 2002, Jan. 2002.
[16] H. F. Hsiao, A. Chindapol, J. A. Ritcey, Y. C. Chen, J. N. Hwang, “A new multimedia packet loss classification algorithm for congestion control over wired/wireless channels,” IEEE ICASSP 2005, Philadelphia, March. 2005
[17] “IEEE P802.11n™/D2.00” February 2007
[18] OmniPeek, http://www.wildpackets.com/products/omnipeek/overview
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40455-
dc.description.abstractDue to the trend of applying the multimedia service through the wireless environment, IEEE 802.11n, the next generation WLAN technology, is proposed by IEEE 802.11n Task Group (TGn). To improve the throughput efficiency, the 802.11n MAC layer has employed the frame aggregation mechanisms, which has a different behavior on the frame transmission, when compared with the existing WLAN IEEE 802.11 a/ b/ g standards.
In this thesis, we improve the bandwidth estimation techniques proposed previously by other researchers to adapt the different wireless LANs. The proposed framework and algorithm has three main features. The first is predicting the actual available bandwidth observed from the upper layer application accurately. The available bandwidth observed from the upper layer will be various according to the different packet sizes of applications. The second feature is predicting the available bandwidth correctly even when the frame aggregation mechanism is activated in the IEEE 802.11n wireless LAN. The latest is to predict the available bandwidth fast and correctly when there exists cross traffic flows in the transmission environment.
Finally, we propose an adaptive rate control scheme using bandwidth estimation to adjust the transmission rate of real-time multimedia applications. We setup an experiment environment and verify that the transmission rate of real-time multimedia applications can be adjusted appropriately to avoid the network congestion. By using the adaptive rate control scheme, the quality of multimedia applications can be maintained at a good level.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:48:07Z (GMT). No. of bitstreams: 1
ntu-97-R95942120-1.pdf: 3532363 bytes, checksum: 1c2c9823e8d117a364887a4a8635ef10 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsContent
Chapter 1 Introduction 1
1.1 Background ...………………………………………….………..... 1
1.2 Related works …………………………………….……………… 2
1.3 Motivation and research goal …………………………….……… 7
Chapter 2 Mathematical and theoretical framework for bandwidth estimation in IEEE 802.11n wireless LAN 9
2.1 An overview of IEEE 802.11n Draft …………………………… 9
2.1.1 The MAC function of IEEE 802.11n ….………………………….….. 9
2.1.2 The PHY function of IEEE 802.11n …………………………..……. 13
2.2 The corrected mathematical formula for the major methods of bandwidth estimation……………………………………………… 14
2.2.1 The corrected mathematical formula for the PPTD method……..…. 14
2.2.2 The corrected mathematical formula for the TTOP method …….…. 20
2.2.3 The bandwidth estimation in IEEE 802.11n wireless LAN ……..….. 25
2.2.4 The generic mathematical formulas of the PPTD / TTOP method for the wireless network………………………………………………… 32
Chapter 3 Measurement techniques for available bandwidth in wireless LANs ……………………………………………………………………. 35
3.1 Calculating the gaps of packet pairs for the PPTD method ..….... 35
3.2 Calculating the probing rate for the TTOP method …………….. 37
3.3 The analysis of the system internal time deviation……………... 39
Chapter 4 An adaptive rate control scheme using the bandwidth estimation for multimedia transmission in wireless LANs 47
4.1 The algorithm of adaptive rate control using bandwidth estimation
………………………………………………...………………….47
4.2 The implementation of rate control scheme on the streaming server and client ……………………………………………………….. 55
Chapter 5 Simulation and experiment result 57
5.1 Experiment of bandwidth estimation in IEEE 802.11 wireless LAN
…………………………………………………………………... 57
5.1.1 The setup of experiment environment for bandwidth estimation ….…. 57
5.1.2 Experiment results of bandwidth estimation using the PPTD method …
………………………………………………………………………….63
5.1.3 Experiment results of bandwidth estimation using the TTOP method …
……………………………………………………………………...…. 70
5.2 Experiment of the rate control scheme using bandwidth estimation in wireless LAN ………………………………………………… 76
5.2.1 The setup of experiment environment for the rate control scheme …….…. 76
5.2.2 Experiment results of adaptive rate control scheme using bandwidth estimation …………………………………………………………………..77
Chapter 6 Conclusion 81
6.1 Conclusion ……………………………………………………… 81
6.2 Future work …..………………………………………….……... 83
Reference












List of Figures
1.1 Gap incurred in the bottleneck link [11] ………..……………………. 4
1.2 Available bandwidth over measured bandwidth in TOPP for a single-hop path …………………………………………..…………... 6
2.1 A-MSDU frame structure [17] ……….…………………………….. 11
2.2 A-MPDU frame format [17] ………………..………………………. 12
2.3 Transmitting probe packets in 802.11 wireless LAN ………..……... 16
2.4 Transmitting probe packets in 802.11 wireless LAN (Simplified) .... 16
2.5 The proportion that the overhead of MAC/PHY layers occupies in the transmitting time of the probe packet/ACK pair in the 802.11 LAN ….
………………………………………………………………………..19
2.6 The ratio D between sending rate Rs and receiving rate Rr. …...….... 22
2.7 The ratio D between sending rate Rs and receiving rate Rr …….…... 24
2.8 The ratio D between sending rate Rs and receiving rate Rr with different probe packet size and the cross traffic ………………...…. 25
2.9 The estimated available bandwidth by TTOP in IEEE 802.11g WLAN
………………………………...………………………………….… 25
2.10 The frame format with A-MSDU aggregation in IEEE 802,11n .….. 27
2.11 The estimated available bandwidth by PPTD with the capacity 144 Mbps (2 X 1 antenna array) of PHY layer in IEEE 802.11n WLAN ….
…………………………………………………………………….... 28
2.12 The estimated available bandwidth by TTOP with the capacity 144 Mbps (2 X 1 antenna array) of PHY layer in IEEE 802.11n WLAN ….
……………………………………………………………………… 29
2.13 The frame format without aggregation and fragment in IEEE 802,11n
……………………………………………………………………... 30
2.14 The frame format with fragment in IEEE 802,11n …………….…... 31
3.1 The transmitting process of the probe packets sending from the sender to the receiver in PPTD measuring process ……...……………….. 41
3.2 The transmitting process of the probe packets sending from the sender to the receiver in TTOP measuring process .……………………….. 45
4.1 The network architecture of adaptive rate control scheme …...…….. 49
4.2 The relationship among the capacity, AvailableBW, and ReserveBW when there are the streaming flow and cross traffic flow in the transmission path …………………………………………………… 51
4.3 The complete flow chart of the adaptive rate control algorithm using the bandwidth estimation technique ………………………………... 54
4.4 The system architecture of the streaming server and client in the wireless LAN …………………………..…………………………… 55
5.1 The architecture of experiment environment for bandwidth estimation …………………………….…………………………….. 58
5.2 The measurement steps of PPTD method in the experiments …..….. 61
5.3 The measurement steps of TTOP method in the experiments …..….. 62
5.4 The estimated results of first experiment using the PPTD method…. 67
5.5 The diagram of setting the field “number of TX buffer” on the wireless network interface card on the client ………………………………... 68
5.6 The estimating results of second experiment using PPTD method ... 69
5.7 The estimating results of second experiment using PPTD method ... 70
5.8 The plot of ratio which equals to sending rate divided by receiving rate V.S. Sending rate of probe packets ……………………………….… 72
5.9 The estimated values of available bandwidth using the TTOP method in first experiment ………………….....…………………….………. 74
5.10 The estimated results of second experiment using TTOP method ………………..…………………………………………..... 75
5.11 The estimated results of third experiment using TTOP method ……………….…………………………………………….. 76
5.12 The architecture of experiment environment for adaptive rate control scheme using bandwidth estimation ……………………………….. 78
5.13 The estimating results of adaptive rate control scheme using bandwidth estimation …………………………..…………………... 81







List of Tables
2.1 Address fields for unicast MPDU containing A-MSDU [17] …....… 12
2.2 The values of headers and frames in IEEE 802.11a …..……………. 19
5.1 The detailed specifications of all devices in the experiment environment ………………………………………………….……... 58
5.2 Key parameters of the cross traffic in the second experiment …….....60
5.3 Key parameters of the cross traffic in the third experiment ……..…. 63
5.4 The flow chart of rate control scheme in our experiment ………….. 79
6.1 The summaries of the PPTD and TTOP methods using Cisco Aironet 1250 series access point in the different wireless LAN ….…………. 83
6.2 The summaries of the PPTD and TTOP methods for the generic case in the different wireless LAN …………………………...….…………. 83
dc.language.isoen
dc.title在無線區域網路中使用頻寬估測技術設計多媒體速率調整控制機制zh_TW
dc.titleUsing bandwidth estimation for the rate control scheme in wireless networksen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許獻聰,張時中,林風,林宗男
dc.subject.keyword頻寬估測,傳輸速率調整,zh_TW
dc.subject.keywordbandwidth estimation,rate control,en
dc.relation.page86
dc.rights.note有償授權
dc.date.accepted2008-07-31
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
3.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved