請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40434完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永耀(Yung-Yaw Chen) | |
| dc.contributor.author | Yi-Dao Jiang | en |
| dc.contributor.author | 江易道 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:47:33Z | - |
| dc.date.available | 2013-07-01 | |
| dc.date.copyright | 2008-08-06 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-31 | |
| dc.identifier.citation | [1]. Bill Wilson, 'Photolithography,' Connexions, June 20, 2003, http://cnx.org/content/m11367/1.1/
[2]. Hong Xiao, “Introduction to Semiconductor Manufacturing Technology”, Prentice Hall, 2001. [3]. 田沛霖, “Design of Model-based Identification and Correction Algorithms for Electron Proximity Effects” 國立台灣大學電機工程研究所碩士論文, 2006 [4]. B.J. Kampherbeek, “MAPPER Technology Developments,” Maskless Workshop, January 17-19, 2005 [5]. 謝艮軒, “Simulation and Analysis of Electrostatic Lens and Application to Next Generation Electron Beam Direct-write Lithography” 國立台灣大學電機工程研究所碩士論文, 2006 [6]. L. P. Muray, .P. Spallas, C. Stebler, K. Lee, M. Mankos, Y. Hsu, M. Gmur, and T. H. P. Chang,“ Advances in arrayed micro-column lithography” Journal of American Vacuum Science Technology B186, Nov/Dec, 2000 [7]. L. P. Muray, C. S. Silver, and J. P. Spallas, “Sub-100-nm lithography with miniature electron beam columns” Journal of American Vacuum Science Technology.B24,6…, Nov/Dec 2006 [8]. E. Kratschmer, S. Kim, M. G. R. Thomson, K. Y. Lee, S. A. Rishton, M. L. Yu, S. Zolgharnain, B. W. Hussey, and T. H. P. Chang “Experimental evaluation of a 20 × 20 mm footprint micro-column,” Journal of American Vacuum Science Technology B14(6), Nov/Dec, 1996 [9]. C. S. Silver, J. P. Spallas, and L. P. Muray, “Silicon photodiodes for low-voltage electron detection in scanning microscopy and electron beam lithography,” Journal of Vacuum Science & Technology B, Volume 24, Issue 6, pp. 2951.2955, Nov 2006 [10]. Hirofumi Morita, Junichi Kato and Nobuo Shimazu, “Basic Characteristics of Beam Position Drift and Field Stitching Error Caused by Electron Beam Column Charging,” Japan Journal of Application Physics. Vol. 35, pp4121.4127, Part 1, No. 7, July 1996 [11]. Junichi Kato, Hirofumi Morita, Kenichi Saito, and Nobuo Shimazu, “ Beam Position Stabilization by Suppression of Electrons Reentering the Electron-beam Column” Journal of Vacuum Science Technology, B 13(6), Nov/Dec 1995 [12]. Junichi Kato, Hirofumi Morita, Kenichi Saito, and Nobuo Shimazu, “ A beam Drift Reduction Device for the X-Ray Mask E-Beam Writer, EB-X2” Japan Journal of Application Physics. Vol. 35, pp. 6429-6434, 1996 [13]. James G. Goodberlet, J. Todd Hastings, and Henry I. Smith, “ Performance of the Raith 150 Electron-beam Lithography System,” Journal of Vacuum Science & Technology B 19(6), Nov/Dec 2001 [14]. S. Tanimoto, D.S. Pickard, C. Kenney, J. Hasi, R.F.W. Pease, “ Demonstration of Secondary Electron Detection using Monolithic Multi-Channel Electron Detector” Hitachi, Ltd., Central Research Laboratory, Kokubunji, 18 5.8601 Japan [15]. D. M. Holburn, G. A. C. Jones, and H. Ahmed, “A pattern Recognition Technique Using Sequences of Marks for Registration in Electron Beam Lithography,” Journal of Vacuum Science & Technology B 8 (6), Nov/Dec 1990 [16]. 郭政達 “Leica EBML300 電子束直寫對準原理及記號辨識簡介”,國家奈米元件實驗室 [17]. 林熙翔 ”電子束微影技術簡介”,工研院機械所奈米工程技術部,微機電技術專輯 [18]. Carl Zeiss SMT – Nano Technology Systems Division, “Detection Principles based on GEMINI Technology” [19]. 國立中興大學貴重儀器中心 http://www.nchu.edu.tw/~material/news/960127fesem.pdf [20]. Joseph Ladislas Wiza, “Micro-channel Plate Detectors,” Journal of Nuclear Instruments and Methods, Vol. 162, 1979 [21]. Grahame C. Rosolen and Warren D. King “Direct-write electron beam lithography automatically aligned with optical lithography for device fabrication,” Conference of Europe on Lithography for Semiconductor Manufacturing, Edinburgh Scotland,1999 [22]. J. Stephen, B. J. Smith, D. C. Marshall and E.M. Wittam “Applications of a semiconductor backscattered electron detector in a scanning electron microscope,” Journal of Physics, Vol 8, 1975 [23]. H. O. Funsten S. M. Ritzau, and R. Korde “Response of 100% Internal Quantum Efficiency Silicon Photodiodes to 200eV–40keV Electrons,” IEEE TRANSACTIONSON NUCLEAR SCIENCE, VOL.44, NO.6, DECEMBER 1997 [24]. A.P. Technologies,“Position Sensing Photodiodes”, http://www.aptechnologies.co.uk [25]. T.W. Ng, H. Y. Tan, S.L. Foo, “ Small Gaussian Laser Beam Diameter Measurement Using a Quadrant Photodiode” Optical & Laser Technology 39, 1098-1100,2007 [26]. Masahiro Toyoda, Kenichi Araki, Yosiaki Suzuki,” Measurement of the Characteristics of a Quadrant Avalanche Photodiode and its Application to a Laser Tracking System” Society of Photo-Optical Instrumentation Engineers. 41(1) 14 5.149, Jan, 2002 [27]. International Radiation Detectors, Inc http://www.ird-inc.com/electron-detectors.htm [28]. Ludwig Reimer, et al., “Image Formation in Low-Voltage Scanning Electron Microscopy,” SPIE-International Society for Optical Engine, 1993 [29]. Jie Dong Inc., “A Guide to Scanning Microscope Observing” [30]. National Instruments Inc. http://sine.ni.com/nips/cds/view/p/lang/en/nid/203786 [31]. International Radiation Detectors, Inc http://www.ird-inc.com/electron-detectors.htm [32]. Raith 150 e-beam lithography software http://www.nanophys.kth.se/nanophys/facilities/nfl/manual/#wfalign [33]. MDC Vacuum Products, LLC http://www.mdcvacuum.com/urd/uniface.urd/ecf0070w.display?7.1.2.1 [34]. Keithley Inc. http://www.keithley.com/products/locurrhiresist/?mn=6485 [35]. Raith product, ”Chessy Introduction”, http://www.raith.com [36]. International Radiation Detectors, Inc. http://www.ird-inc.com/axuv.html [37]. MATLAB-Image Processing Handbook [38]. D. Drouin, A. R. Couture, D Joly, “CASINOV2.42—A Fast and Easy-to-use Modeling Tool for Scanning Electron Microscopy and Microanalysis Users” SCANNING VOL.29,92–101,2007, Wiley Periodicals,Inc. [39]. Raynald Gauvin, Eric Lifshin, Hendrix Demers, Paula Horny, and Helen Campbell, “Win X-ray: a New Monte Carlo Program that Computes X-ray Spectra Obtained with a Scanning Electron Microscope” Microscopy Society of America, Microsc. Microannal. 12, 49-64, 2006 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40434 | - |
| dc.description.abstract | 對於22奈米世代之IC製造技術,多重電子束微影術被公認為極具潛力的發展中技術之一,利用多重束電子束同時運作可大量增加系統之產能。在此類系統中,光電二極體(SPD)電子感測器極可用於有限的工作距離及低能量電子偵測,其擁有小尺寸,高電子偵測率,以及低成本等等的優點,因此適合整合於多重電子束系統當中。
本研究的目標在架設位置感測光電二極體於掃描式電子顯微鏡系統(SEM),並以低能量電子束及低工作距離實驗其感測效能,以作為多感測器陣列設計參數的驗證。感測區分割為四像限,可用於分析電子束所產生之背向散射電子分布,以及長時間操作下電子束光學系統所產生的電子束漂移現象,並藉由高斯分布模型模擬背向散射電子在四像限之分布特性,可用以分析實驗中電子束掃描時四像限訊號之變化。此外,搭配電子束掃描線圈以及光電二極體電子感測器達成背向散射電子影像之偵測, 在未來可使發展中之多電子束直寫微影系統—MPML2具有成像能力。 | zh_TW |
| dc.description.abstract | Multiple Electron beam lithography is one of the promising technologies for 22nm-node Integrated Circuit (IC) fabrications. For the purpose of improving system throughput, large amount of beams should be driven at the same time, and miniature electrostatic elements are widely utilized in these systems. Silicon Photodiodes Detector (SPD) can be used in the systems under the small working distance and low electron energy. The advantages of small profile, high electron collection efficiency and efficient cost make it suitable to integrate in the multiple electron beam lithography system.
The purpose of this research is to build the silicon photodiodes detector in the Scanning Electron Microscope (SEM) system. The detection performance is illustrated under the low electron energy and small working distance through experiment. The quadrant cells of active area on silicon photodiodes are used to analysis the backscattered electron generated from the primary beam. The beam drifting problem of the electron beam optical system for the long time operation is observed. The characteristic of backscattered electron in of Gaussian distribution is simulated on quadrant cell of SPD. The variations of quadrant cell signal in experiment can be analysis through the simulation. Besides, Backscattered Electron Image (BEI) is built through deflection coil scanning and makes it possible to forming an image in the developing massively parallel mask-less lithography system (MPML2). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:47:33Z (GMT). No. of bitstreams: 1 ntu-97-R95921061-1.pdf: 4301230 bytes, checksum: cf202a5d6ab501ed784a9e84908b6f84 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 誌謝 ………………………………………………………iii
中文摘要 ……………………………………………………………v Abstract………………………………………………………………vii Statement of Contributions ………………………………………ix List of Tables ………………………………………………xiii Chapter 1 Introduction …………………………22 1.1 Electron Beam Lithograph …………………………22 1.2 Multiple E-beam Lithography…………… 25 1.3 Motivation & Problem Definition…………… 28 1.4 Thesis Overview ………………………………………30 Chapter 2 Introduction to SPD Based Detection System ………………………………………………………………31 2.1 Basic of Electron Interaction ……………31 2.2 Types of Electron Detector for MPML2 System 34 2.3 Dynamic Characteristics of SPD ……………35 2.3 Review of the Application of SPD ……………42 2.4 Review of the Measurement of Beam Drifting 43 2.5 Summary ……………………………………………………46 Chapter 3 System Architecture ……………47 3.1 JEOL JSM 7000 Scanning Electron Microscopy 48 3.2 System for Detection Backscattered Electron 52 3.3 Software Configuration …………………………64 3.4 SPD Mounting Adjustment …………………………67 3.4.1 SPD Retraction Angle Adjustment ……………69 3.4.2 Write Field Alignment Procedure ……………73 3.5 Summary …………………………………………………78 Chapter 4 Monte Carlo Simulation and Line Scan Method ……………………………………………………………79 4.1 Monte Carlo Simulation …………………………79 4.1.1 Energy Distribution of Beam Scanning………… 81 4.1.2 Collection Efficiency V.S. Detector Parameter ………………………………………………………………82 4.2 Gaussian BE Spot on SPD …………………………89 4.3 Line Scan Method ………………………………………98 4.4 Summary …………………………………………………102 Chapter 5 Experimental Results………………………103 5.1 Performance Test of SPD …………………………103 5.1.1 Current Gain V.S. Acceleration Voltage……………104 5.1.2 Current Gain V.S. Probe Current……………………106 5.1.3 Current Gain V.S. Working Distance ……………107 5.1.4 Beam Speed Response…………………………109 5.2 Beam Shifting and Drifting Detection……………111 5.2.1 Line Scan of Writing Field 111 5.2.2 Simulation Result ………………………………………123 5.3 2D BEI Scanning ………………………………………128 5.4 Summary …………………………………………………139 Chapter 6 Discussion & Conclusion............ 140 References.............................................142 | |
| dc.language.iso | zh-TW | |
| dc.subject | 背向散射電子 | zh_TW |
| dc.subject | 電子感測器 | zh_TW |
| dc.subject | 電子束微影 | zh_TW |
| dc.subject | 電子束漂移 | zh_TW |
| dc.subject | electron beam lithography | en |
| dc.subject | backscattered electron | en |
| dc.subject | silicon photodiodes detector | en |
| dc.subject | beam drifting | en |
| dc.subject | multiple beam | en |
| dc.title | 利用背向散射電子偵測電子束微影系統電子束漂移現象 | zh_TW |
| dc.title | Beam Drift Phenomenon in Electron Beam Lithography through Backscattered Electron Detection | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 蔡坤諭(Kuen-Yu Tsai) | |
| dc.contributor.oralexamcommittee | 顏家鈺(Jia-Yush Yen),林進燈(Chin-Teng Lin) | |
| dc.subject.keyword | 電子束微影,電子束漂移,背向散射電子,電子感測器, | zh_TW |
| dc.subject.keyword | electron beam lithography,multiple beam,beam drifting,silicon photodiodes detector,backscattered electron, | en |
| dc.relation.page | 145 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-31 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 4.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
