請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40415完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃榮山(Long-Sun Huang) | |
| dc.contributor.author | Yu-Cheng Lai | en |
| dc.contributor.author | 賴宇晟 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:47:03Z | - |
| dc.date.available | 2010-08-04 | |
| dc.date.copyright | 2008-08-04 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2008-07-29 | |
| dc.identifier.citation | [1] 王大維, '全球生物感測器市場至2009年將達80億美元,' 2005.
[2] M. Tortonese, R. C. Barrett, and C. F. Quate, 'Atomic Resolution with an Atomic Force Microscope Using Piezoresistive Detection,' Applied Physics Letters, vol. 62, pp. 834-836, Feb 22 1993. [3] R. Berger, E. Delamarche, H. P. Lang, C. Gerber, J. K. Gimzewski, E. Meyer, and H. J. Guntherodt, 'Surface stress in the self-assembly of alkanethiols on gold,' Science, vol. 276, pp. 2021-2024, Jun 27 1997. [4] J. Thaysen, A. Boisen, O. Hansen, and S. Bouwstra, 'Atomic force microscopy probe with piezoresistive read-out and a highly symmetrical Wheatstone bridge arrangement,' Sensors and Actuators a-Physical, vol. 83, pp. 47-53, May 22 2000. [5] P. A. Rasmussen, J. Thaysen, O. Hansen, S. C. Eriksen, and A. Boisen, 'Optimised cantilever biosensor with piezoresistive read-out,' Ultramicroscopy, vol. 97, pp. 371-376, Oct-Nov 2003. [6] L. D. Mello and L. T. Kubota, 'Review of the use of biosensors as analytical tools in the food and drink industries,' Food Chemistry, vol. 77, pp. 237-256, May 2002. [7] B. J.E and O. D.F, Biochemical engineering fundamentals, 1986. [8] Chibata, 'Immobilized Enzyme,' pp. pp148-264, 1978. [9] J. Cunningham, Introduction to Bioanalytical Sensors, 1998. [10] R. H. Garrett and C. M. Grisham, Biochemistry, 1995. [11] 馮晉嘉, 微小化生物感測器技術趨勢分析及發展政策建議, 2002. [12] F. Scheller and F. Schubert, Biosensor. New York, USA: Elsevier Science, 1992. [13] G. Barkhausen, 'Cantilever bridge across the St. Lorenz river near Quebec in Canada,' Zeitschrift Des Vereines Deutscher Ingenieure, vol. 51, pp. 361-368, 1907. [14] B. J. Kane, C. W. Storment, S. W. Crowder, D. L. Tanelian, and G. T. A. Kovacs, 'Force-Sensing Microprobe for Precise Stimulation of Mechanosensitive Tissues,' Ieee Transactions on Biomedical Engineering, vol. 42, pp. 745-750, Aug 1995. [15] H. J. Butt, 'A sensitive method to measure changes in the surface stress of solids,' Journal of Colloid and Interface Science, vol. 180, pp. 251-260, Jun 1 1996. [16] C. Ziegler, 'Cantilever-based biosensors,' Analytical and Bioanalytical Chemistry, vol. 379, pp. 946-959, Aug 2004. [17] D. Schubert, W. Jenschke, T. Uhlig, and F. M. Schmidt, 'Piezoresistive Properties of Polycrystalline and Crystalline Silicon Films,' Sensors and Actuators, vol. 11, pp. 145-155, Mar 1987. [18] P. J. French and A. G. R. Evans, 'Piezoresistance in Polysilicon and Its Applications to Strain-Gauges,' Solid-State Electronics, vol. 32, pp. 1-10, Jan 1989. [19] J. Y. W. Seto, 'Piezoresistive Properties of Polycrystalline Silicon,' Journal of Applied Physics, vol. 47, pp. 4780-4783, 1976. [20] B. V. Zeghbroeck, Principles of Semiconductor Devices, 2004. [21] W. R. Thurber, R. L. Mattis, Y. M. Liu, and J. J. Filliben, 'Resistivity-Dopant Density Relationship for Boron-Doped Silicon,' Journal of the Electrochemical Society, vol. 127, pp. 2291-2294, 1980. [22] G. Masetti, M. Severi, and S. Solmi, 'Modeling of Carrier Mobility against Carrier Concentration in Arsenic-Doped, Phosphorus-Doped, and Boron-Doped Silicon,' Ieee Transactions on Electron Devices, vol. 30, pp. 764-769, 1983. [23] A. Boisen, J. Thaysen, H. Jensenius, and O. Hansen, 'Environmental sensors based on micromachined cantilevers with integrated read-out,' Ultramicroscopy, vol. 82, pp. 11-16, 2000. [24] O. Hansen and A. Boisen, 'Noise in piezoresistive atomic force microscopy,' Nanotechnology, vol. 10, pp. 51-60, Mar 1999. [25] F. N. Hooge, '1/F Noise Sources,' Ieee Transactions on Electron Devices, vol. 41, pp. 1926-1935, Nov 1994. [26] F. N. Hooge, T. G. M. Kleinpenning, and L. K. J. Vandamme, 'Experimental Studies on 1-F Noise,' Reports on Progress in Physics, vol. 44, pp. 479-532, 1981. [27] 黃榮章, 'A Study on Analysis of Biomolecular Recognition Using a Nanomechanics-based Biosensor,' 2006. [28] J. H. Zhao, T. Ryan, P. S. Ho, A. J. McKerrow, and W. Y. Shih, 'Measurement of elastic modulus, Poisson ratio, and coefficient of thermal expansion of on-wafer submicron films,' Journal of Applied Physics, vol. 85, pp. 6421-6424, May 1 1999. [29] C.-M. Hung, 'Fabrication and Characterization of A Piezoresistive Microcantilever Biosensor and System ', 2007. [30] H.-F. Ji, K. M. Hansen, Z. Hu, and T. Thundat, 'Detection of pH variation using modified microcantilever sensors,' Sensors and Actuators B: Chemical, vol. 72, pp. 233-238, 2001. [31] 吳志偉, 'Engineering Science for MEMS Design and Fabrication,' 2005. [32] J. Electrochem, 'KOH Etching,' 1990. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40415 | - |
| dc.description.abstract | 由於醫療觀念逐漸被重視,所有相關的疾病檢測以及健康檢測也因應蓬勃發展,現今生物感測器大多仍使用化學或是螢光標記方式,而本實驗選擇以力學為基礎的微懸臂梁生物感測器做為量測機制,希望可以研發更具靈敏度的感測器。本實驗使用單根壓阻式微懸臂梁,希望可直接觀察微懸臂梁訊號並加以分析。
微懸臂梁發展上常使用雙根微懸臂梁並配合惠司通電橋擷取訊號,雖然惠司通電橋在物理意義上能補償流體以及溫度對懸臂梁所造成的雜訊,但本研究發現由於雙根微懸臂梁表面的材料並不相同,容易造成化學訊號反應差異,故本實驗選擇單根壓阻式微懸臂梁做為研究機制,在適當的控溫下可將溫度限制變化在0.5oC之內。在進行化學表面修飾前後,探討不同pH值對於壓阻式微懸臂梁之影響。結果顯示,當pH值在2,3,11,12皆會對於微懸臂梁訊號產生反應,而pH值在4-10之間並不會使微懸臂梁訊號變化,當pH值較小時,微懸臂梁的訊號上升;反之,當pH值較大時,微懸臂梁的訊號下降。上述結果,有助於在檢測生物訊號時對於單根壓阻式微懸臂梁於酸鹼值影響上的掌握。 本實驗已成功了解到微懸臂梁在酸鹼值下之反應範圍,以及當連結物鍵結鍵結在微懸臂梁後對於酸鹼值靈敏度降低,有了這些了解未來可以進行蛋白質檢測實驗,利用生物分子間的專一性鍵結,有效的測試及分析出生物分子對於訊號的影響,經過足夠量的分析統計過後,在遠程目標上,吾人希望可以結合無線傳輸的方式與本實驗的生物感測器做一完美性的結合。 | zh_TW |
| dc.description.abstract | With the advancement of technology, relevant disease detection and health examination are growing with prosperity. However, most of the biological sensors are still using chemical or fluorescent markers as detectors, which are having lower sensitivities. This work utilized single-beam micro-cantilever biosensor for measuring biological signal, and for targeting the development of a more sensitive detecting method.
In most of the studies double-beam micro-cantilever biosensors are constructed as two resistances of the Wheatstone bridge and one is taken as reference to compensate for background noises resulting from fluid field and temperature change. But this work discovered that the difference of surface materials of the two beams may result in ignoring effects of chemical reactions to biological signals. In the present study we select single free-beam devices as measuring mechanism to maintain the temperature change in 5oC. Utilizing immune analysis, the beam surface was treated by gold-sulfur bonding to explore the effect of surface modification (HS-(CH2)7-COOH) on micro cantilever beams. The results show that pH does make effect on the cantilevers at the values of 2, 3, 11, 12, while pH does not make effect on cantilevers at pH values between 4 to 10. The signals increase at smaller pH values and decrease at larger pH values. For results mentioned above, the unwanted signal arisen from the single-beam piezoresistive cantilever response to varying pH value can be eliminated in the detection of biological for future reference. We have successfully discovered the response to varying pH value effect on the single-beam micro cantilever and measured the decline of output signals after chemical adsorption. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:47:03Z (GMT). No. of bitstreams: 1 ntu-96-R95543052-1.pdf: 3327537 bytes, checksum: 0e9fe3fb4dc07ae3b3bf167a929725ca (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 誌謝 I
第一章 導論 1 1-1前言 1 1-2 研究動機與目的 2 1-3微懸臂梁生物感測器之文獻回顧 2 1-4 論文大綱 4 第二章 生物感測器之原理及應用 6 2-1 生物感測器的基本原理 6 2-2 辨識分子層鍵結表面方式 7 2-3 生物分子之專一性辨識 9 2-4 現有生物感測器介紹 11 2-5 微懸臂梁式生物感測器 14 第三章 壓阻式微懸臂梁生物感測器 17 3-1 壓阻材料與分析 17 3-1-1 壓阻層薄膜離子參雜(Doping)分析 17 3-1-2 硼離子之離子佈植性質與載子(Carrier)性質 19 3-2 懸臂梁生物感測器之電路與訊號分析 20 3-3 雜訊分析 22 第四章 壓阻式微懸臂梁生物感測器之設計與製作 26 4-1 壓阻式微懸臂梁生物感測器之設計與製作 26 4-1-1壓阻形狀設計 27 4-1-2 壓阻式微懸臂梁之設計 29 4-1-3 微懸臂梁生物感測器之製作 30 4-2 微流道系統之設計與製作 34 4-2-1微流道及流道上蓋之設計 34 4-2-2 微流道之製作 36 4-2-3 微流道上蓋之製作 37 4-2-4流道系統設計說明與系統組裝 38 第五章 實驗架構與結果討論 40 5-1 實驗架設 40 5-1-1實驗周邊 40 5-1-2 實驗軟體程式 41 5-2 實驗流程 42 5-2-1 酸鹼濃度對微懸臂梁影響實驗流程 42 5-3實驗問題討論 44 5-3-1 壓阻層之保護探討 44 5-3-2 化學性影響探討 46 5-3-3 懸臂梁翹曲影響 47 5-3-4溫度對實驗的影響 48 5-3-5降低流場擾動 49 5-4 實驗結果之探討 50 第六章 結論與未來展望 54 6-1 結論 54 6-2 未來展望 54 第七章 附錄 56 | |
| dc.language.iso | zh-TW | |
| dc.subject | 化學表面修飾 | zh_TW |
| dc.subject | 酸鹼 | zh_TW |
| dc.subject | 壓阻式微懸臂梁 | zh_TW |
| dc.subject | pH | en |
| dc.subject | chemical surface modification | en |
| dc.subject | piezoresistive microcantilever | en |
| dc.title | 酸鹼濃度及化學表面修飾對於壓阻式微懸臂梁生物感測器之影響 | zh_TW |
| dc.title | The study of different pH and chemical surface modification on a piezoresistive microcantilever biosensor | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳兆勛(Chao-Hsun Chen) | |
| dc.contributor.oralexamcommittee | 施文彬(Wen-Pin Shih) | |
| dc.subject.keyword | 壓阻式微懸臂梁,酸鹼,化學表面修飾, | zh_TW |
| dc.subject.keyword | piezoresistive microcantilever,pH,chemical surface modification, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 3.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
