Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40410
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林文澧(Win-Li Lin)
dc.contributor.author"Chiang, Shih-Wei"en
dc.contributor.author蔣詩偉zh_TW
dc.date.accessioned2021-06-14T16:46:55Z-
dc.date.available2010-08-06
dc.date.copyright2008-08-06
dc.date.issued2008
dc.date.submitted2008-07-31
dc.identifier.citation參考文獻
Adams JC and Watt FM (1993) Regulation of development and differentiation by the extracellular matrix. Development (Cambridge, England) 117(4):1183-1198.
Alexandrov AV, Demchuk AM, Burgin WS, Robinson DJ and Grotta JC (2004) Ultrasound-enhanced thrombolysis for acute ischemic stroke: phase I. Findings of the CLOTBUST trial. J Neuroimaging 14(2):113-117.
Chiu CY, Chen SH and Wang SH (2007) Effect of ultrasound doses on the amyloid-beta 25-35 induced PC12 apoptosis. Conf Proc IEEE Eng Med Biol Soc 2007:5838-5841.
Crisci AR and Ferreira AL (2002) Low-intensity pulsed ultrasound accelerates the regeneration of the sciatic nerve after neurotomy in rats. Ultrasound in medicine & biology 28(10):1335-1341.
Danen EH and Sonnenberg A (2003) Integrins in regulation of tissue development and function. The Journal of pathology 201(4):632-641.
Evans JR and Barker RA (2008) Neurotrophic factors as a therapeutic target for Parkinson's disease. Expert opinion on therapeutic targets 12(4):437-447.
Fatar M, Griebe M, Stroick M, Kern R, Hennerici M and Meairs S (2001) Neuroprotective effect of combined ultrasound and microbubbles in a rat model of middle cerebral artery infarction. American Institute of Physics
Frisch SM and Francis H (1994) Disruption of epithelial cell-matrix interactions induces apoptosis. The Journal of cell biology 124(4):619-626.
Fry FJ, Ades HW and Fry WJ (1958) Production of reversible changes in the central nervous system by ultrasound. Science (New York, NY 127(3289):83-84.
Giancotti FG and Ruoslahti E (1999) Integrin signaling. Science (New York, NY 285(5430):1028-1032.
Grashoff C, Aszodi A, Sakai T, Hunziker EB and Fassler R (2003) Integrin-linked kinase regulates chondrocyte shape and proliferation. EMBO reports 4(4):432-438.
Hickey WF (2001) Basic principles of immunological surveillance of the normal central nervous system. Glia 36(2):118-124.
Hirsch E, Katanaev VL, Garlanda C, Azzolino O, Pirola L, Silengo L, Sozzani S, Mantovani A, Altruda F and Wymann MP (2000) Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science (New York, NY 287(5455):1049-1053.
Hong CZ, Liu HH and Yu J (1988) Ultrasound thermotherapy effect on the recovery of nerve conduction in experimental compression neuropathy. Archives of physical medicine and rehabilitation 69(6):410-414.
Hontanilla B, Auba C and Gorria O (2007) Nerve regeneration through nerve autografts after local administration of brain-derived neurotrophic factor with osmotic pumps. Neurosurgery 61(6):1268-1274; discussion 1274-1265.
Hynes RO (1999) Cell adhesion: old and new questions. Trends in cell biology 9(12):M33-37.
Iadecola C, Zhang F, Casey R, Nagayama M and Ross ME (1997) Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci 17(23):9157-9164.
Jin K, Zhu Y, Sun Y, Mao XO, Xie L and Greenberg DA (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A 99(18):11946-11950.
Kitagawa H, Hayashi T, Mitsumoto Y, Koga N, Itoyama Y and Abe K (1998) Reduction of ischemic brain injury by topical application of glial cell line-derived neurotrophic factor after permanent middle cerebral artery occlusion in rats. Stroke; a journal of cerebral circulation 29(7):1417-1422.
Kramer JF (1984) Ultrasound: evaluation of its mechanical and thermal effects. Archives of physical medicine and rehabilitation 65(5):223-227.
Lauffenburger DA and Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84(3):359-369.
Lee GA, Lin CH, Jiang HH, Chao HJ, Wu CL and Hsueh CM (2004) Microglia-derived glial cell line-derived neurotrophic factor could protect Sprague-Dawley rat astrocyte from in vitro ischemia-induced damage. Neuroscience letters 356(2):111-114.
Lee HS, Millward-Sadler SJ, Wright MO, Nuki G and Salter DM (2000) Integrin and mechanosensitive ion channel-dependent tyrosine phosphorylation of focal adhesion proteins and beta-catenin in human articular chondrocytes after mechanical stimulation. J Bone Miner Res 15(8):1501-1509.
Liedert A, Kaspar D, Blakytny R, Claes L and Ignatius A (2006) Signal transduction pathways involved in mechanotransduction in bone cells. Biochemical and biophysical research communications 349(1):1-5.
Liu B and Hong JS (2003) Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. The Journal of pharmacology and experimental therapeutics 304(1):1-7.
Lu DY, Liou HC, Tang CH and Fu WM (2006) Hypoxia-induced iNOS expression in microglia is regulated by the PI3-kinase/Akt/mTOR signaling pathway and activation of hypoxia inducible factor-1alpha. Biochemical pharmacology 72(8):992-1000.
Lu YZ, Lin CH, Cheng FC and Hsueh CM (2005) Molecular mechanisms responsible for microglia-derived protection of Sprague-Dawley rat brain cells during in vitro ischemia. Neuroscience letters 373(2):159-164.
Madsen PW, Jr. and Gersten JW (1961) The effect of ultrasound on conduction velocity of peripheral nerve. Archives of physical medicine and rehabilitation 42:645-649.
Maruyama W, Nitta A, Shamoto-Nagai M, Hirata Y, Akao Y, Yodim M, Furukawa S, Nabeshima T and Naoi M (2004) N-Propargyl-1 (R)-aminoindan, rasagiline, increases glial cell line-derived neurotrophic factor (GDNF) in neuroblastoma SH-SY5Y cells through activation of NF-kappaB transcription factor. Neurochemistry international 44(6):393-400.
Meredith JE, Jr., Fazeli B and Schwartz MA (1993) The extracellular matrix as a cell survival factor. Molecular biology of the cell 4(9):953-961.
Mizuta I, Ohta M, Ohta K, Nishimura M, Mizuta E and Kuno S (2001) Riluzole stimulates nerve growth factor, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor synthesis in cultured mouse astrocytes. Neuroscience letters 310(2-3):117-120.
Mourad PD, Lazar DA, Curra FP, Mohr BC, Andrus KC, Avellino AM, McNutt LD, Crum LA and Kliot M (2001) Ultrasound accelerates functional recovery after peripheral nerve damage. Neurosurgery 48(5):1136-1140; discussion 1140-1131.
Oh-hashi K, Kaneyama M, Hirata Y and Kiuchi K (2006) ER calcium discharge stimulates GDNF gene expression through MAPK-dependent and -independent pathways in rat C6 glioblastoma cells. Neurosci Lett 405(1-2):100-105.
Park SY, Lee H, Hur J, Kim SY, Kim H, Park JH, Cha S, Kang SS, Cho GJ, Choi WS and Suk K (2002) Hypoxia induces nitric oxide production in mouse microglia via p38 mitogen-activated protein kinase pathway. Brain Res Mol Brain Res 107(1):9-16.
Parsons JT and Parsons SJ (1997) Src family protein tyrosine kinases: cooperating with growth factor and adhesion signaling pathways. Current opinion in cell biology 9(2):187-192.
Petit V and Thiery JP (2000) Focal adhesions: structure and dynamics.
Biology of the cell / under the auspices of the European Cell Biology Organization 92(7):477-494.
Plow EF, Haas TA, Zhang L, Loftus J and Smith JW (2000) Ligand binding to integrins. The Journal of biological chemistry 275(29):21785-21788.
Rosales C and Juliano RL (1995) Signal transduction by cell adhesion receptors in leukocytes. Journal of leukocyte biology 57(2):189-198.
Tang CH, Yang RS, Huang TH, Lu DY, Chuang WJ, Huang TF and Fu WM (2006) Ultrasound stimulates cyclooxygenase-2 expression and increases bone formation through integrin, focal adhesion kinase, phosphatidylinositol 3-kinase, and Akt pathway in osteoblasts. Molecular pharmacology 69(6):2047-2057.
Tokumine J, Kakinohana O, Cizkova D, Smith DW and Marsala M (2003) Changes in spinal GDNF, BDNF, and NT-3 expression after transient spinal cord ischemia in the rat. Journal of neuroscience research 74(4):552-561.
Wang Y, Lin SZ, Chiou AL, Williams LR and Hoffer BJ (1997) Glial cell line-derived neurotrophic factor protects against ischemia-induced injury in the cerebral cortex. J Neurosci 17(11):4341-4348.
You Y and Kaur C (2000) Expression of induced nitric oxide synthase in amoeboid microglia in postnatal rats following an exposure to hypoxia. Neuroscience letters 279(2):101-104.
Yu AC, Liu RY, Zhang Y, Sun HR, Qin LY, Lau LT, Wu BY, Hui HK, Heung MY and Han JS (2007) Glial cell line-derived neurotrophic factor protects astrocytes from staurosporine- and ischemia- induced apoptosis. J Neurosci Res 85(15):3457-3464.
Zhang F, Casey RM, Ross ME and Iadecola C (1996) Aminoguanidine ameliorates and L-arginine worsens brain damage from intraluminal middle cerebral artery occlusion. Stroke; a journal of cerebral circulation 27(2):317-323.
Zhang WR, Sato K, Iwai M, Nagano I, Manabe Y and Abe K (2002) Therapeutic time window of adenovirus-mediated GDNF gene transfer after transient middle cerebral artery occlusion in rat. Brain research 947(1):140-145.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40410-
dc.description.abstract低強度間歇性超音波提供非侵入式、非熱傳導的機械訊息傳遞,可以加速骨癒合速度、促進骨骼形成,然而超音波在中樞神經系統的機制目前仍然不很清楚,星狀細胞執行很多功能,包含血腦屏障的形成、神經組織的營養供給,並且在大腦修復和結痂的過程中扮演主要的角色,星狀細胞支持神經細胞是藉由分泌神經滋養因子,像是glial cell line-derived neurotrophic factor(GDNF)、brain-derived neurotrophic factor(BDNF)和vascular endothelial growth factor(VEGF),神經滋養因子可調控神經細胞之生長與存活,並可挽救受損的細胞,本篇論文則探討超音波的刺激對星狀細胞的影響,我們發現星狀細胞在超音波刺激後,會增加 GDNF、BDNF和VEGF 的表現,在機制方面,利用流式細胞儀分析可以觀察到超音波會增加 α2 及 β3 integrins在細胞上的表現,使用蛇毒蛋白 rhodostomin可以拮抗超音波刺激引起的神經滋養因子表現,另外phosphatidylinositol 3-kinase(PI3K)抑制劑LY294002、wortmannin以及 NF-κB 抑制劑 (PDTC)、IκB protease (TPCK)抑制劑也可以抑制超音波刺激引起的神經滋養因子表現,此外,超音波的刺激會促進 Akt、IκB、p65 的磷酸化並且促進 p50 和 p65 進入細胞核內,在動物實驗方面,我們也發現超音波會促進大鼠大腦海馬迴(hippocampus)中 GDNF和BDNF 的表現,總而言之,我們的結果証明超音波刺激會透過integrin/PI3K/Akt 及 NF-κB 這條訊息傳遞路徑而增加神經滋養因子的表現;我們也使用BV-2這株細胞研究超音波在微膠細胞的影響,微膠細胞在中樞神經系統的缺氧狀態下會形成活化態,之前的研究也已證實缺血性中風與神經細胞的死亡和缺氧與微膠細胞的活化有關,本論文則要研究超音波的刺激對活化微膠細胞的影響,我們發現在缺氧狀態下會引發 iNOS和 TNF-α 表現增加,另外我們也發現超音波刺激會抑制缺氧狀態下所引發的 iNOS 和 TNF-α 的表現。總結來說,我們證明超音波刺激會增加神經滋養因子的釋放,並且抑制活化微膠細胞 iNOS 和 cytokines 的產生,因此超音波刺激可能對中樞神經系統疾病是有所助益的。zh_TW
dc.description.abstractLow-intensity pulsed ultrasound (LIPUS) is regarded as a non-invasive and non-thermal mechanotransduction which accelerates fracture healing, promotes bone formation and tissues regeneration. However, the mechanism and effect generated by ultrasound (US) in central nervous system (CNS) is not clear. Astrocytes exert many functions, including the formation of the blood-brain barrier, the provision of nutrients to the nervous tissue, and play a principal role in the repair and scarring process in the brain. Astrocytes support neuronal cells by secreting various kinds of neurotrophic factors such as the glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF). Neurotrophic factors play several important roles in the survival and development of neuronal cells. Here, we explored the influence of US stimulation on astrocytes. It was found that US stimulation increased mRNA expression levels of GDNF, BDNF and VEGF in cultured rat brain astrocyte (RBA-1). Flow cytometry analysis demonstrated that US increased cell surface expression of α2 and β3 integrins. Rhodostomin, a snake venom disintegrin, attenuated the expression of neurotrophic factors induced by US. Phosphatidylinositol 3-kinase (PI3K) inhibitors LY294002 and wortmannin antagonized the potentiating action of US. NF-κB inhibitor (PDTC) or IκB protease inhibitor (TPCK) also exerted similar inhibitory action on the effect of US. Furthermore, US stimulation increased the phosphorylation of Akt at Ser473 . US stimulation also induced phosphorylation of inhibitory subunit
(IκB) of nuclear factor-κB (NF-κB), phosphorylation of p65 and translocation of active p65 and p50 subunit from cytosol into the nucleus. It was also found that US stimulation increased mRNA expression levels of GDNF and BDNF in the hippocampus of Rats. Taken together, our results provide evidence that US stimulation increases GDNF, BDNF and VEGF expression via the integrin/PI3K/Akt and NF-κB signaling pathway. We also examined the effect of US on microglia by using BV-2 cell line. Exposure to hypoxia caused microglia activation and animal studies have shown that neuronal cell death is related to microglia activation following cerebral ischemia. Our preliminary results demonstrate that hypoxia induced iNOS and TNF-α expression in microglia. In addition, hypoxia-induced iNOS and TNF-α expression was attenuated by the pre-exposure to US. In conclusion, US enhanced neurotrophic factor release in astrocytes and inhibited iNOS and TNF-α production in hypoxic microglia. US may be thus helpful to the diseases of CNS.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:46:55Z (GMT). No. of bitstreams: 1
ntu-97-R95548023-1.pdf: 6424127 bytes, checksum: 5d7492c85305b68aea0490f2e719e003 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsV
目 錄
中文摘要……………………………………………………………I
英文摘要……….…………………………………………….……III
目錄……….……………………………………………………… V
縮寫表…………….……………………………………………… VII
圖目錄…………………………………………………………… IX
第一章 緒論………………………………………………………. 1
1-1超音波原理與生物效應……………………………………... 1
1-2以超音波刺激神經.………………………………………….. 2
1-3神經膠細胞…………………………………………………... 4
1-4機械感受與神經細胞間質受器之關連……………………... 6
1-5研究動機與目的………………………………………..……. 7
第二章 實驗材料與方法………………………………………… 13
2-1實驗材料……………………………………………………… 13
2-2實驗方法……………………………………………………… 15
第三章 實驗結果…..……………………………………….… 27
3-1超音波刺激增加星狀細胞GDNF、BDNF、VEGF之表現.. ...27
3-2超音波透過Integrin 接受器增加神經滋養因子表現……… 27
VI
3-3超音波促進星狀細胞的神經滋養因子釋放是經由
PI3 kinase/Akt所調節…………………………………………..28
3-4超音波促進星狀細胞的神經滋養因子釋放是經由
NF-κB所調節……………………………………………….….….29
3-5超音波刺激對星狀細胞(RBA-1)存活率的影響…………..30
3-6超音波刺激於大鼠大腦之GDNF、BDNF表現…………..…...30
3-7超音波抑制缺氧的微膠細胞分泌iNOS和cytokines……..…31
第四章 討論……………………………………………………… 32
第五章 結論………………………………………………………..57
參考文獻………………….…………………………………………58
dc.language.isozh-TW
dc.title低強度間歇性超音波刺激增加神經膠細胞神經滋養
因子表現作用機轉之探討
zh_TW
dc.titleEnhancement of Low-Intensity Pulsed Ultrasound on the Expression of Neurotrophic Factors in Glia Cellsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.coadvisor符文美(Wen-Mei Fu)
dc.contributor.oralexamcommittee謝松蒼,王士豪
dc.subject.keyword超音波,星&#63994,細胞,微膠細胞,神,經滋養因子,誘導一氧化氮&#37238,zh_TW
dc.subject.keywordUltrasound,Astrocytes,Microglia,neurotrophic factor,iNOS,en
dc.relation.page65
dc.rights.note有償授權
dc.date.accepted2008-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
6.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved