請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40396完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝志誠 | |
| dc.contributor.author | Yu-Chih Chen | en |
| dc.contributor.author | 陳育智 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:46:33Z | - |
| dc.date.available | 2008-08-04 | |
| dc.date.copyright | 2008-08-04 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-31 | |
| dc.identifier.citation | 1. Auroux, A.; Gervasini, A. 1990. Microcalorimetric Study of the Acidity and Basicity of Metal Oxide Surfaces. The Journal of Physical Chemistry 94: 6371-6379.
2. Barrett, E. P; Joyner, L. G; Halenda, P. P. 1951. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms . Journal of the American Chemical Society 73: 373-380. 3. Bordawekar, S. V.; Doskocil, E. J.; Davis, R. J. 1998. Microcalorimetric Study of CO2 and NH3 Adsorption on Rb- and Sr-Modified Catalyst Supports. Langmuir 14: 1734-1738 4. Brunauer, S.; Emmett, P. H.; Teller, E. 1938. Adsorption of gas in multimolecular layer. Journal of the American Chemical Society 60: 309-319. 5. Campelo, J. M.; Garcia, A.; Luna, D.; Marinas, J. M.; Romero, A. A. 1995. Characterization of acidity in AlPO4-Al2O3 (5-15 wt% Al2O3) catalysts using pyridine temperature programmed desorption. Thermochimica Acta 265: 6. Cantrell, D. G.; Gillie, L. J.; Lee, A. F.; Wilson, K. 2005. Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis. Applied Catalysis A: General 287(2): 183-190. 7. Dias, C. R.; Zavoianu, R; Portela, M. F. 2002. Study of the acid-base properties of SiO2-supported NiMoO4 catalyst by temperature-programmed desorption. Effect of the support. Reaction kinetics and catalysis letters 77(2): 317-324. 8. Ebiura, T.; Echizen, T.; Ishikawa, A.; Murai, K.; Baba, T. 2005. Selective transesterification of triolein with methanol to methyl oleate and glycerol using alumina loaded with alkali metal salt as a solid-base catalyst. Applied Catalysis A: Genera 283(1-2):111-116. 9. Fishel, C. T. and Davis, R. J. 1994. Characterization of Mg-Al Mixed Oxides by Temperature-Programmed Reaction of 2-Propanol. Dangmuir 10: 159-165. 10. Fung, J.; Wang, I. 1998. Determination of surface acidity and basicity of TiO2-ZrO2 by temperature programmed desorption of ammonia and acetic acid. Applied Catalysis A: General 166: 327-334. 11. Furuta, S.; Matsuhashi, H.; Arata, K. 2004. Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure. Catalysis 12. Goering, C. E.; Campion, R. M.; Schwab, A. W.; Pryde, E. H. 1982. Evaluation of soybean oil-aqueous ethanol microemulsions for diesel engines. International conference on plant and vegetable oils as fuel. ASAE Publication: 279-28 13. Goering, C. E.; Fry, B. 1983a. Engine durability screening test of a diesel oil/soyoil/accohol microemulsion fuel. JAOCS, Journal of the American Oil Chemists' Society 61(10): 1627-1632. 14. Goering, C. E.; Schwab, A. W.; Campion, R. M.; Pryde, E. H. 1983b. Soyoil-ethanol microemulsions as diesel fuel. Transactions of the American Society of Agricultural Engineers 26(6): 1602-1604, 1607 15. Goodrum, J. W. 1984. Fuel properties of peanut oil blends. Transactions of the American Society of Agricultural Engineers 27(5):1257-1262. 16. Gregg, S. J.; Sing, K. S. 1982. Adsorption, surface area, and porosity. 2nd ed. New York: Academic Press. 17. Gryglewicz, S. 1999. Rapeseed oil methyl esters preparation using heterogeneous catalysts. Bioresource Technology 70:249-253. 18. ICT. 2007. Hydrotalcite-like compounds. Czech Republic: Institute of Chemical Technology, Prague. Department of Solid State Chemistry. Available at: http://www.vscht.cz/min/en_veda_apmin1.htm. Accessed 24 Feb. 2007 19. Jitputti, J.; Kitiyanan, B.; Rangsunvigit, P.; Bunyakiat, K.; Attanatho, L.; Jenvanitpanjakul, P. 2006. Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chemical Engineering Journal 116(1): 61-66. 20. Karmee, S. K.; Mahesh, P.; Ravi, R.; Chadha, A. 2004. Kinetic study of the base-catalyzed transesterification of monoglycerides from Pongamia oil. JAOCS, Journal of the American Oil Chemists' Society 81(5): 425-430. 21. Karmee, S. K.; Chadha, A. 2005. Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresource Technology 96(13):1425-1429. 22. Kim, H. J.; Kang, B. S.; Kim, M. J.; Park, Y. M.; Kim, D. K.; Lee, J. S.; Lee, K. Y.. 2004. Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catalysis Today 93-95: 315-320. 23. Leclercq, E.; Finiels, A.; Moreau, C. 2001. Transesterification of rapeseed oil in the presence of basic zeolotes and related solid catalyst. Journal of the American Oil Chemists' Society (JAOCS) 78(11):1161-1165. 24. Li, H. T.; Xie, W. L. 2006. Transesterification of soybean oil to biodiesel with Zn/I2 catalyst. Catalysis Letters 107(1-2): 25-30. 25. Lotero, E.; Liu, Y.; Lopez, D. E.; Suwannakarn, K.; Bruce, D. A.; Goodwin, Jr. J. G. 2005. Synthesis of Biodiesel via Acid Catalysis. Industrial and Engineering Chemistry Research 44: 5353-5363. 26. Lopez, D. E.; Goodwin Jr., James, G.; Bruce, D. A.; Lotero, E. 2005. Transesterification of triacetin with methanol on solid acid and base catalysts. Applied Catalysis A: General 295(2): 97-105. 27. Lower, S. and Shields, J. E. 1990. Powder surface area and porosity. 3rd edn, Chapman & Hall, London. 28. Naegeli, D. W.; Moses, C. A. 1983. Fuel microemulsios for jet engine smoke reduction. Journal of Engineering for Power, Transactions ASME 105(1): 18-23. 29. Parrillo, D. J.; Gorte, R. J. 1992. Characterization of stoichiometric adsorption complexes in H-ZSM-5 using microcalorimetry. Catalysis Letters 16(1-2): 17-25. 30. Pryde, E. H. 1983. Vegetable oils as fuel alternatives – symposium overview. JAOCS, Journal of the American Oil Chemists' Society 61(10): 1609-1610. 31. Raty, J.; Pakkanen, T. A. 2001. Temperature-programmed desorption study of Re/γ-Al2O3 catalyst prepared from Re2(CO)10 precursor. Applied Catalysis A: General 208:169-175. 32. Raty, J.; Pakkanen, T. A. 2000.Controlled gas-phase preparation and HDS activity. Catalysis Letters 65: 175–180. 33. Schwab, A. W., Bagby, M. O., Freedman, B., 1987. Preparation and properties of diesel fuels from vegetables oils. Fuel 66 (10): 1372–1378. 34. Sheehan, J.; Dunahay, T.; Benemann, J.; Roessler, P. 1998. A Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae. U.S. National Renewable Energy Laboratory Close-Pout Report: NREL/TP-580-24190. 35. Shen, J.; Kobe, J. M.; Chen, Yi; Dumesic, J. A. 1994. Synthesis and Surface Acid/Base Properties of Magnesium-Aluminum Mixed Oxides Obtained from Hydrotalcites. Dangmuir 10: 3902-3908. 36. Shen, J.; Tu, M.; Hu, C. 1998. Structural and Surface Acid/Base Properties of Hydrotalcite-Derived MgAlO Oxides Calcined at Varying Temperatures. Journal of Solid State Chemistry 137: 295-301. 37. Shull, C. G. 1948. The determination of pore size distribution from gas adsorption data. Journal of the American Chemical Society 70: 1405-1410. 38. Tu, M.; Shen, J.; Chen, Y. 1997. Microcalorimetric Studies of Surface Acid/Base Properties of Magnesium–Iron Catalysts Prepared from Hydrotalcite-Type Precursors. Journal of Solid State Chemistry 128: 73-79. 39. Varde, K. S. 1984. Bulk modulus of vegetable oil-diesel fuel blends. Fuel 63(5): 713-715. 40. Xie, W. L.; Huang, X. M. 2006. Synthesis of biodiesel from soybean oil using heterogeneous KF/ZnO. Catalysis Letters 107(1-2): 53-59. 41. Xie, W. L.; Li, H. T. 2006a. Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil. Journal of Molecular Catalysis A: Chemical 255: 1-9. 42. Xie, W. L.; Li, H. T. 2006b. Hydroxyl content and refractive index determinations on transesterified soybean oil. . Journal of the American Oil Chemists' Society 83(10): 869-872. 43. Xie, W. L.; Peng, H.; Chen, L. 2006a. Calcined Mg-Al hydrotalcites as solid base catalysts for methanolysis of soybean oil. Journal of Molecular Catalysis A: Chemical 246(1-2): 24-32. 44. Xie, W. L.; Peng, H.; Chen, L. 2006b. Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Applied Catalysis A: General 300(1): 67-74. 45. Xie, W. L.; Huang, X. M.; Li, H. T. 2007. Soybean oil methyl esters preparation using NaX zeolites loaded with KOH as a heterogeneous catalyst. Bioresource Technology 98: 936-939. 46. Zavoianu, R; Dias, C. R.; Portela, M. F. 2001. Study of the acid-base properties of SiO2-supported NiMoO4 catalyst by temperature-programmed desorption. Effect of the active phase content. Reaction kinetics and catalysis letters 72(2): 201-208. 47. Ziejewski, M.; Kaufmann, K. R.; Schwab, A. W.; Pryde, E. H. 1983. Diesel engine evaluation of a nonionic sunflower oil-queous ethanol microemulsion. JAOCS, Journal of the American Oil Chemists' Society 61(10): 1620-1626 48. Zubik, J.; Sorenson, S. C.; Goering, C. E. 1984. Diesel engine combustion of sunflower oil fuels. Transactions of the American Society of Agricultural Engineers 27(5): 1252-1256. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40396 | - |
| dc.description.abstract | 生質柴油又稱生物柴油,是以未加工過或者使用過之植物油或動物性脂肪作為原料,採用混合稀釋、微細乳化、熱解或轉酯化反應等方法所產製之生質燃料,具生物可分解性、無毒、燃燒後污染性低等優點,不僅可以單獨使用,也可與石化柴油混合使用,是一項具有潛力之潔淨替代燃料。
轉酯化反應是指以適當比例混合油脂與醇類,在加入與反應物同相之酸性催化劑、鹼性催化劑、脂解酶或非勻相之固體催化劑,或超臨界狀態下,反應、產製出另外一種酯類的過程,也是產製生質柴油最常用之方法。其中,採用非勻相催化劑者,具有可簡化產物分離與純化程序,減少廢水產出等優點,是一種對環境較友善且經濟上可行之方法。 本研究採用共沉澱法製備不同煅燒溫度、不同Mg/Al 莫爾比之非勻相催化劑-水滑石,在溫度60℃下,對甲醇與黃豆油催化轉酯成生質柴油,並探討其對轉酯率的影響研究結果顯示,以Mg/Al 莫耳比為3、煅燒溫度為550℃製程之水滑石催化能力最高,轉酯最佳條件為溫度60°C、時間8 小時、醇油莫耳比15:1、催化劑劑量5%,且可以85~95%的再生率重複使用水滑石達三次以上。 | zh_TW |
| dc.description.abstract | Biodiesel is a kind of clean and renewable energy which can be used directly or mixed with fossil diesel as fuel on vehicles. It can be extracted from recycled vegetable oil or animal fat by using blending, diluting, microemulsion, pyrolysis, or transesterification method.
Transesterification means that appropriate amount of alcohols and fat are mixed in supercritical condition with various kind of catalyst to produce esters. It is a common process in producing biodiesel. By using all kinds of catalyst, heterogeneous catalyst is relatively environment-friendly and makes a simple process. In this study, soybean oil is mixed with methanol under 60℃ with hydrotalcite as catalyst to investigate the effect of Mg/Al molar ratio and calcination temperature to the conversion. As result, hydrotalcite made at 550℃ and Mg/Al ratio in 3 has the best conversion. Optimal condition of transesterification is at 60℃, 8hrs, Methanol/Oil=15, catalyst of 5%. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:46:33Z (GMT). No. of bitstreams: 1 ntu-97-R95631027-1.pdf: 1124135 bytes, checksum: c898e3ed2ff822cd72ba941177d17d8f (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 vii 第一章 前言 1 第二章 文獻探討 3 2.1 生質柴油之簡介 3 2.2 生質柴油之料源與製備 6 2.3非均相催化劑之製備與特徵 11 2.4文獻回顧 14 第三章 實驗材料與研究方法 25 3.1實驗材料與設備 25 3.2實驗內容及方法 27 3.2.1非勻相催化劑之製備 27 3.2.2非勻相催化轉酯製程 28 3.2.3轉酯反應成分分析與轉酯率之計算 29 3.2.4水滑石比表面積測定 32 3.2.5水滑石 X射線繞射分析 34 3.2.6掃描式電子顯微鏡 35 第四章 結果與討論 36 4.1非勻相催化劑之特徵分析 36 4.1.1掃描式電子顯微鏡(SEM) 36 4.1.2 X-射線繞射分析(XRD) 39 4.1.3 表面積測定 43 4.2標準溶液之層析 44 4.3非勻相催化轉酯 46 4.3.1 反應時間的影響 46 4.3.2 醇油莫耳比的影響 47 4.3.3 催化劑劑量的影響 48 4.3.4 煆燒溫度與鎂鋁莫耳比的影響 49 4.3.5 水滑石催化劑回收再利用之轉酯率 50 第五章 結論 51 參考文獻 52 | |
| dc.language.iso | zh-TW | |
| dc.subject | 水滑石 | zh_TW |
| dc.subject | 生質柴油 | zh_TW |
| dc.subject | 非勻相催化劑 | zh_TW |
| dc.subject | 轉酯 | zh_TW |
| dc.subject | Hydrotalcite | en |
| dc.subject | Biodiesel | en |
| dc.subject | Heterogeneous catalyst | en |
| dc.subject | Transesterification | en |
| dc.title | 生質柴油非勻相催化轉酯製程之探討 | zh_TW |
| dc.title | Transesterification Process of Biodiesel Using Heterogeneous Catalysts | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周楚洋,李允中,陳力騏 | |
| dc.subject.keyword | 生質柴油,非勻相催化劑,轉酯,水滑石, | zh_TW |
| dc.subject.keyword | Biodiesel,Heterogeneous catalyst,Transesterification,Hydrotalcite, | en |
| dc.relation.page | 57 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-31 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 1.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
