Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4036
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王倫(Lon A. Wang)
dc.contributor.authorWei-Hong Jhengen
dc.contributor.author鄭偉弘zh_TW
dc.date.accessioned2021-05-13T08:40:56Z-
dc.date.available2021-02-16
dc.date.available2021-05-13T08:40:56Z-
dc.date.copyright2016-02-16
dc.date.issued2016
dc.date.submitted2016-01-22
dc.identifier.citation1. J. Homola, S. S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical, 1999. 54(1-2): p. 3-15.
2. A. K. Sharma, R. Jha, and B. D. Gupta, Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sensors Journal, 2007. 7(8): p. 1118-1129.
3. G. Kostovski, P. Stoddart, and A. Mitchell, The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies. Advanced Materials, 2014. 26(23): p. 3798-3820.
4. X. Yang, N. Ileri, C. C. Larson, T. C. Carlson, J. A. Britten, A. S. P. Chang, C. Gu, and T. C. Bond, Nanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scattering. Optics Express, 2012. 20(22): p. 24819-24826.
5. R. C. Jorgenson, and S. S. Yee, A fiber-optic chemical sensor based on surface plasmon resonance. Sensors and Actuators B: Chemical, 1993. 12(3): p. 213-220.
6. A. V. Sayats, I. I. Smolyaninov, and A. A. Maradudin, Nano-optics of surface plasmon polaritons. Physics Reports, 2005. 408(3-4): p. 131-314.
7. Z. Chen, Z. Dai, N. Chen, S. Liu, F. Pang, B. Lu, and T. Wang, Gold nanoparticles-modified tapered fiber nanoprobe for remote SERS detection. IEEE Photonics Technology Letters, 2014. 26(8): p. 777-780.
8. W. Ding, S. R. Andrews, T. A. Berks, and S. A. Maier, Modal coupling in fiber tapers decorated with metallic surface gratings. Optics Letters, 2006. 31(17): p. 2556-2558.
9. A. Dhawan, M. D. Gerhold, and J. F. Muth, Plasmonic structures based on subwavelength apertures for chemical and biological sensing applications. IEEE Sensors Journal, 2008. 8(6): p. 942-950.
10. A. Dhawan, J. F. Muth, D. N. Leonard, M. D. Gerhold, J. Gleeson, T. Vol-Dinh, and P. E. Russell, Focused ion beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications. Journal of Vacuum Science & Technology B, 2008. 26(6): p. 2168-2173.
11. S. Scheerlinck, D. Taillaert, D. V. Thourhout, and R. Baets, Flexible metal grating based optical fiber probe for photonic integrated circuits. Applied Physics Letters, 2008. 92(3): p. 031104.
12. E. G. Johnson, J. Stack, T. J. Suleski, C. Koehler, and W. Delaney, Fabrication of micro optics on coreless fiber segments. Applied Optics, 2003. 42(5): p. 785-791.
13. C. T. Tseng, Fabrication and application of binary phase grating on a fiber end by utilizing interference lithography, in Graduate Institute of Photonics and Optoelectronics2011, National Taiwan University: Taipei.
14. S. J. Lin, Building up two exposure systems of optical fiber interference lithography to make micro polarizers, in Graduate Institute of Photonics and Optoelectronics2013, National Taiwan University: Taipei.
15. J. W. Jeong, S. R. Yang, Y. H. Hur, S. W. Kim, K. M. Baek, S. Yim, H. I. Jang, J. H. Park, S. Y. Lee, C. O. Park, and Y. S. Jung, High-resolution nanotransfer printing applicable to diverse surfaces via interface-targeted adhesion switching. Nature Communications, 2014. 5(11): p. 5387.
16. J. Zaumseil, M. A. Meitl, J. W. P. Hsu, B. R. Acharya, K. W. Baldwin, Y. L. Loo, and J. A. Rogers, Three-dimensional and multilayer nanostructures formed by nanotransfer printing. Nano Letters, 2003. 3(9): 1223-1227.
17. E. Menard, L. Bilhaut, J. Zaumseil, and J. A. Rogers, Improved surface chemistries, thin film deposition techniques, and stamp designs for nanotransfer printing. Langmuir, 2004. 20(16): 6871-6878.
18. A. R. Camara, P. M. P. Gouvêa, A. C. M. S. Dias, A. M. B. Braga, R. F. Dutra, R. E. de Araujo, and I. C. S. Carvalho, Dengue immunoassay with an LSPR fiber optic sensor. Optics Express, 2013. 21(22): p. 27023-27031.
19. Y. Lin, Y. Zou, and R. G. Lindquist, A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing. Biomedical Optics Express, 2011. 2(3): p. 478-484.
20. S. Choi, K. R. Kim, K. Oh, C. M. Chun, M. J. Kim, S. J. Yoo, and D. Y. Kim, Interferometric inscription of surface relief gratings on optical fiber using azo polymer film. Applied Physics Letters, 2003. 83(6): p. 1080-1082.
21. S. Kuwayama, and Y. Harada, Acid-soluble glass for making flexible optical fiber bundle, U.S. Patent 4 460 696, July 17,1984.
22. C. H. Chiang, Fabrication of subwavelength dual structures on silicon substrates with anti-reflection and low sliding angles, in Graduate Institute of Photonics and Optoelectronics2010, National Taiwan University: Taipei.
23. Y. P. Chen, Stitching submicron periodic patterns over a planar substrate and a roller by utilizing step-and-align interference lithography, in Graduate Institute of Photonics and Optoelectronics2011, National Taiwan University: Taipei.
24. X. Fang, Fabrication of nano metal meshes by nanoimprint lithography for organic electronics device applications, in Graduate Institute of Photonics and Optoelectronics2015, National Taiwan University: Taipei.
25. E. Delamarche, H. Schmid, B. Michel, and H. Biebuyck, Stability of molded polydimethylsiloxane microstructures. Advanced Materials, 1997. 9(9): p. 741-746.
26. A. Galliano, S. Bistac, and J. Schultz, Adhesion and friction of PDMS networks: molecular weight effects. Journal of Colloid and Interface Science, 2003. 265(2): p. 372-379.
27. D. J. Graham, D. D. Price, and B. D. Ratner, Solution assembled and microcontact printed monolayers of dodecanethiol on gold: a multivariate exploration of chemistry and contamination. Langmuir, 2002. 18(5): p. 1518-1527.
28. Y. Meng, Z. B. Li, X. Chen, J. P. Chen, Reducing wrinkles and cracks of metal films on PDMS substrate by hexane extraction and oxygen plasma etching. Microelectronic Engineering, 2014. 130: p. 8-12.
29. J. A. Vickers, M. M. Caulum, and C. S. Henry, Generation of hydrophilic poly(dimethylsiloxane) for high-performance microchip electrophoresis. Analytical Chemistry, 2006. 78(21): p. 7446-7452.
30. J. N. Lee, C. Park, and G. M. Whitesides, Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Analytical Chemistry, 2003. 75(23): p. 6544-6554.
31. D. T. Eddington, J. P. Puccinelli, and D. J. Beebe, Thermal aging and reduced hydrophobic recovery of polydimethylsiloxane. Sensors and Actuators B: Chemical, 2006. 114(1): p. 170-172.
32. B. B. Sauer, and G. T. Dee, Molecular weight and temperature dependence of polymer surface tension: comparison of experiment with theory. Macromolecules, 1991. 24(8): p. 2124-2126.
33. K. D. Bartle, B. W. Wright, and M. L. Lee, Characterization of glass, quartz, and fused silica capillary column surfaces from contact-angle measurements. Chromatographia, 1981. 14(7): p. 387-397.
34. G. L. Sma, Surface-energy determinations of tin oxide-coated soda-lime-silica glass. Journal of the American Ceramic Society, 1988. 71(4): C-217-C‐219.
35. Y. C. Yang, and P. R. Yoon, Determination of dispersive properties of silicas by inverse gas chromatography: variation with surface treatment. Materials Transactions, 2007. 48(6): p. 1548-1553.
36. S. A. Maier, Plasmonics: fundamentals and applications. Springer, 2007.
37. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices. Applied Optics, 1998. 37(22): p. 5271-5283.
38. K. S. Yee, Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Transactions on Antennas and Propagation, 1966. 14(3): p. 302-307.
39. H. Nguyen, G. W. Baxter, S. F. Collins, F. Sidiroglou, A. Roberts, and T. J. Davis, Modeling of gold circular sub-wavelength apertures on a fiber endface for refractive index sensing. Photonic Sensors, 2012. 2(3): p. 271-276.
40. J. Martin, J. Proust, D. Gérard, J. L. Bijeon, J. Plain, and P. Royer, Ultra-sensitive plasmonic nanosensors for biochemical detection. Proc. of SPIE, 2011. 12(29): p. 79110T-1-79110T-6.
41. Y. Lin, Y. Zou, and R. G. Lindquist, A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing. Biomedical Optics Express, 2011. 2(3): p. 478-484.
42. D. R. Lide, CRC handbook of chemistry and physics. CRC Press, 2005.
43. J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 1994. 144(2): p. 185-200.
44. K. Feng, Difference scheme based on variational principle. Journal of applied and computational Mathematics,1965. 2(4): p. 238-262.
45. J. M. McMahon, J. Henzie, T. W. Odom, G. C. Schatz, and S. K. Gray, Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomalysurface plasmon polaritons. Optics Express, 2007. 15(26): p. 18119-18129.
46. Y. B. Huang, Fabrication of Schottky photodetector by using Si-cored fibers, in Graduate Institute of Photonics and Optoelectronics2015, National Taiwan University: Taipei.
47. S. Patskovsky, A. V. Kabashin, and M. Meunier, Properties and sensing characteristics of surfaceplasmon resonance in infrared light. Journal of the Optical Society of America A, 2003. 20(8): p. 1644-1650.
48. S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, Silicon-based surface plasmon resonance sensing with two surface plasmon polariton modes. Applied Optics, 2003. 42(34): p. 6905-6909.
49. T. Kan, N. Tsujiuchi, E. Iwase, K. Matsumoto, and I. Shimoyama, Planar near-infrared surface plasmon resonance sensor with Si prism and grating coupler. Sensors and Actuators B: Chemical, 2010. 144(1): p. 295-300.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4036-
dc.description.abstract近來,在光纖端面製作次微米金屬結構並應用於表面電漿共振感測十分受到矚目,到目前為止已經發展了許多應用。因此,表面電漿共振光纖探針的需求與日俱增。其中表面電漿共振光纖探針的大量製作方法,是我們在本篇論文的主要焦點。
在此論文中,我們先介紹表面電漿共振光纖探針的製作過程。光纖探針的大量製作由光纖集束來實現,但由於此光纖集束即使在研磨後,仍然無法得到適合阻劑旋塗的平面,我們應用了奈米轉印技術來克服這項問題,此技術靠著材料之間表面能的差異來轉移金屬結構。我們選用聚二甲基矽氧烷做為轉印過程中印章的材料。在製作含有週期結構的印章的過程中,圖案的設計是藉由我們實驗室特有的雙光干涉曝光系統來完成。然而在將複製圖案至印章時,我們發現印章圖案在次微米的尺度下會有結構黏合的問題,此問題是因未固化的小分子而起並可由一些有機溶液或加長固化時間來減緩。將處理過後的印章鍍上金屬後,我們先於玻璃基板上進行奈米轉印並優化參數,而後才將優化的參數應用於光纖集束上。經由一系列量測結果顯示轉印結果良好,並且製作的結構為一三維結構。
為研究表面電漿共振光纖探針的光學特性,我們引用了FDTD Solutions與Comsol兩套商業軟體。模擬結果預測了反射與穿透頻譜的趨勢,同時表面電漿共振的位置與特性也被探討與證實。在外界環境的模擬當中發現到,穿透頻譜中的共振位置隨著環境改變而飄移,但另一方面,由於三維結構製作完整,反射頻譜並不隨環境而改變。在實驗量測的部分,頻譜量測結果與模擬結果有高度的相似性,證實了模擬模組的可靠性。藉由多重頻譜的重疊,暗示了利用奈米轉印技術達成表面電漿共振光纖探針大量製作的潛力。穿透頻譜在折射率感測方面亦有良好的表現,在共振位置之靈敏度為265.7 nm/RIU。本論文最後則示範以該光纖探針進行牛血清蛋白之生物感測。
zh_TW
dc.description.abstractTo date, fabricating metallic submicron structures on an optical fiber facet and applying to the surface plasmon resonance (SPR) sensing have drawn a lot of attentions, and have led to many applications. Therefore, the need of SPR fiber probes increases steadily. The method for mass production of the SPR fiber probes is the main focus of this work.
In this work, we first introduced the processes for the fabrication of the SPR fiber probes. The mass production of the probes was realized by fiber bundles. However, even if the bundle was polished, it could not generate a suitable plane for the spin-coating process of the resists. The nanotransfer printing (nTP) technique was adopted to overcome this problem. The technique relied on the different surface energies between the materials to transfer the metallic structures. PDMS was chosen as the material for the stamps used in nTP process. In the process of the fabrication of the stamps patterned with periodic structures, the patterns were designed by our unique two-beam interference lithography (IL) system. Nevertheless, it was found that the patterns on the stamps buckled up during the replication of the patterns to the stamps. The problem resulted from the uncured low molecular weight (LMW) chains, which could be removed by some organic solutions or a longer curing time. After a metallic layer was deposited on the treated stamps, we first applied the nTP process on the glass substrates and optimized the parameters. Then the optimized parameters were applied on the fiber bundles.
To study the optical characteristics of the SPR fiber probes, two commercial software, FDTD Solutions and Comsol, were used in this study. The simulated results revealed the trends of the reflection and transmission spectra and the characteristics of SPR were also confirmed and discussed. In the simulation of different surroundings, the resonant position in the transmission spectrum shifted as the surroundings changed while the resonant position in the reflection spectrum remained still due to the structures’ insensitivity to the surroundings. In experiment, the measured results showed very good consistency with the simulated, which verified the reliability of the models used in the simulation. Based on the spectra obtained from different probes, the potential for mass production of the SPR fiber probes is found by utilizing fiber bundles and nTP technique. The transmission spectra showed good performance in refractive index sensing with a sensitivity of 265.7 nm/RIU for the resonant position. Finally, biosensing of bovine serum albumin (BSA) with the SPR fiber probes was demonstrated.
en
dc.description.provenanceMade available in DSpace on 2021-05-13T08:40:56Z (GMT). No. of bitstreams: 1
ntu-105-R01941071-1.pdf: 8136646 bytes, checksum: af688b9670ded92ac37c6b22479b56cb (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
Statement of Contributions v
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES xiii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Organization of the Thesis 5
Chapter 2 Fabrication of Three-Dimensional Metallic Structures on Optical Fiber Ends by Nanotransfer Printing 8
2.1 Fabrication of fiber bundle 8
2.2 Fabrication of the stamps for nTP 12
2.2.1 Two-beam inteference lithography 12
2.2.2 Fabrication and stability of the PDMS stamps 16
2.3 Extraction of low molecular weight PDMS chains 20
2.3.1 Extraction by organic solvents 20
2.3.2 Extraction by thermal aging 24
2.3.3 Comparison of the two extraction methods 26
2.4 Applying nTP on the glass substrate 28
2.5 Applying nTP on the fiber bundle and separating SPR fiber probes 34
Chapter 3 Simulation of 3D Metallic Gratings on Optical Fiber Ends 38
3.1 The dielectric function of metals 38
3.2 The theory of surface plasmon polaritons 43
3.3 Finite-difference time-domain 48
3.3.1 Introduction 48
3.3.2 Model building by the FDTD Solutions of Lumerical Solutions 50
3.4 Finite element method 55
3.4.1 Introduction 55
3.4.2 Model building by the RF Module of Comsol Multiphysics 56
3.5 Results and discussions of the simulation 58
Chapter 4 Measurement of SPR Fiber Probes with 3D Metallic Gratings 65
4.1 Basic experimental set-up 65
4.2 Optical characteristics of the SPR fiber probes 68
4.3 Biosensing with SPR fiber probes 75
Chapter 5 Conclusions and Future Work 77
5.1 Conclusions 77
5.2 Future Work 79
5.2.1 Fabrication improvement on the fiber bundle 79
5.2.2 Silicon-cored fiber based SPR fiber sensors 81
References 83
dc.language.isoen
dc.subject大量製作zh_TW
dc.subject奈米轉印zh_TW
dc.subject光纖zh_TW
dc.subject表面電漿共振zh_TW
dc.subject光纖集束zh_TW
dc.subjectfiber bundleen
dc.subjectmass productionen
dc.subjectnanotransfer printingen
dc.subjectoptical fiberen
dc.subjectsurface plasmon resonanceen
dc.title應用於生物感測的表面電漿共振光纖探針之大量製作方法與其功效初步檢驗zh_TW
dc.titleMethod for Mass Production of Surface Plasmon Resonance Fiber Probes for Label-Free Biosensing and Preliminary Test of efficacyen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee黃念祖(Nien-Tsu Huang),魏培坤(Pei-Kuen Wei)
dc.subject.keyword奈米轉印,光纖,表面電漿共振,光纖集束,大量製作,zh_TW
dc.subject.keywordnanotransfer printing,optical fiber,surface plasmon resonance,fiber bundle,mass production,en
dc.relation.page88
dc.rights.note同意授權(全球公開)
dc.date.accepted2016-01-22
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf7.95 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved