請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40363完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 傅立成 | |
| dc.contributor.author | Yi-Tzu Lin | en |
| dc.contributor.author | 林怡孜 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:45:45Z | - |
| dc.date.available | 2010-08-04 | |
| dc.date.copyright | 2008-08-04 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-30 | |
| dc.identifier.citation | [1] E. Seemann, K. Nickel, and R. Stiefelhagen, “Head pose estimation using stereo vision for human-robot interaction,” Proceedings of Sixth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 626–631, 2004.
[2] B. Sileye and J.-M. Odobez, “Head pose tracking and focus of attention recognition algorithms in meeting rooms,” Multimodal Technologies for Perception of Humans, pp. 345–357, 2007. [3] Y. Hu, L. Chen, Y. Zhou, and H. Zhang, “Estimating face pose by facial asymmetry and geometry,” Proceedings of Sixth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 651–656, 2004. [4] T. Funahasahi, M. Tominaga, T. Fujiwara, and H. Koshimizu, “Hierarchical face tracking by using ptz camera,” Proceedings of Sixth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 427–432, 2004. [5] G. Panin and A. Knoll, “Real-time 3d face tracking with mutual information and active contours,” Advances in Visual Computing, pp. I: 1–12, 2007. [6] F. Dornaika and F. Davoine, “Simultaneous facial action tracking and expression recognition in the presence of head motion,” International Journal of Computer Vision, vol. 76, no. 3, pp. 257–281, 2008. [7] H. Moon, R. Chellappa, and A. Rosenfeld, “3d object tracking using shape-encoded particle propagation,” Proceedings of Eighth IEEE International Conference on Computer Vision, vol. 2, pp. 307–314 vol.2, 2001. [8] M. La Cascia, S. Sclaroff, and V. Athitsos, “Fast, reliable head tracking under varying illumination: an approach based on registration of texture-mapped 3d models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 4, pp. 322–336, Apr. 2000. [9] L. Vacchetti, V. Lepetit, and P. Fua, “Stable real-time 3d tracking using online and offline information,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 10, pp. 1385–1391, October 2004. [10] T. K. Jaewon Sung and D. Kim, “Pose robust face tracking by combining active appearance models and cylinder head models,” International Journal of Computer Vision, 2008. [11] Z. Khan, T. Balch, and F. Dellaert, “Mcmc-based particle filtering for tracking a variable number of interacting targets,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 11, pp. 1805–1819, Nov. 2005. [12] J. Deutscher, A. Blake, and I. Reid, “Articulated body motion capture by annealed particle filtering,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 126–133 vol.2, 2000. [13] J. Deutscher, A. Davison, and I. Reid, “Automatic partitioning of high dimensional search spaces associated with articulated body motion capture,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,vol. 2, pp. II–669–II–676 vol.2, 2001. [14] N. Gordon, “A hybrid bootstrap filter for target tracking in clutter,” IEEE Transactions on Aerospace and Electronic Systems, vol. 33, no. 1, pp. 353–358, Jan. 1997. [15] J. MacCormick and A. Blake, “A probabilistic exclusion principle for tracking multiple objects,” International Journal of Computer Vision, vol. 39, no. 1, pp.57–71, 2000. [16] J. MacCormick and M. Isard, “Partitioned sampling, articulated objects, and interface-quality hand tracking,” Proceedings of Sixth European Conference on Computer Vision-Part II, pp. 3–19, 2000. [17] P. Perez, J. Vermaak, and A. Blake, “Data fusion for visual tracking with particles,” Proceedings of the IEEE, vol. 92, no. 3, pp. 495–513, Mar. 2004. [18] G. H. Le Lu, Xiangtian Dai, “Efficient particle filtering using ransac with application to 3d face tracking,” Image and Vision Computing, vol. 24, no. 6, pp.581–592, 2006. [19] J. Tu, T. Huang, and H. Tao, “Accurate head pose tracking in low resolution video,” Proceedings of Seventh International Conference on Automatic Face and Gesture Recognition, pp. 573–578, Apr. 2006. [20] S. O. Ba and J. M. Odobez, “A rao-blackwellized mixed state particle filter for head pose tracking,” ACM ICMI Workshop on Multimodal Multiparty Meeting Processing (MMMP), 2005. [21] J. Sherrah and S. Gong, “Fusion of perceptual cues for robust tracking of head pose and position,” Pattern Recognition, vol. 34, no. 8, pp. 1565–1572, 8 2001. [22] S. Avidan, “Support vector tracking,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 8, pp. 1064–1072, Aug. 2004. [23] O. Williams, A. Blake, and R. Cipolla, “Sparse bayesian learning for efficient visual tracking,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 8, pp. 1292–1304, Aug. 2005. [24] M. Isard and A. Blake, “Condensation – conditional density propagation for visual tracking,” International Journal of Computer Vision, vol. 29, no. 1, pp.5–28, 1998. [25] N. Gordon, D. Salmond, and A. Smith, “Novel approach to nonlinear/nongaussian bayesian state estimation,” Radar and Signal Processing, IEE Proceedings F, vol. 140, no. 2, pp. 107–113, Apr. 1993. [26] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking,” IEEE Transactions on Signal Processing[see also IEEE Transactions on Acoustics, Speech, and Signal Processing], vol. 50, no. 2, pp. 174–188, Feb. 2002. [27] J. S. Liu and R. Chen, “Sequential Monte Carlo methods for dynamic systems,”Journal of the American Statistical Association, vol. 93, no. 443, pp. 1032–1044,1998. [28] V. N. Vapnik, “The nature of statistical learning theory”. New York, NY, USA:Springer-Verlag New York, Inc., 1995. [29] S. Basu, I. Essa, and A. Pentland, “Motion regularization for model-based head tracking,” Proceedings of Thirteenth International Conference on Pattern Recognition, vol. 3, pp. 611–616 vol.3, Aug. 1996. [30] M. Malciu and F. Preteux, “A robust model-based approach for 3d head tracking in video sequences,” Proceedings of Fourth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 169–174, 2000. [31] P. Viola and M. J. Jones, “Robust real-time face detection,” International Journal of Computer Vision, vol. 57, no. 2, pp. 137–154, 2004. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40363 | - |
| dc.description.abstract | 人臉姿態追蹤一直是個重要的研究題目並且可以延伸出許多有趣的應用,其中,利用單一相機來追蹤姿態特別具挑戰性,這是因為在單一相機成像過程中失去了深度的資訊,本論文之目的在於提出一個強健且可達到系統即時性要求之追蹤演算法。
在本演算法中,我們使用影像平面之座標、目標物大小、平面上旋轉角度以及臉部左右轉動之角度共五個參數來描述目標物之狀態(state),前四個參數是平面的資訊,而第五個參數則是立體的資訊,並且利用一個粒子濾波器(particle filter)來追蹤目標物狀態,由於前述特性,我們又將狀態空間拆為兩個部份,第一部份是平面狀態空間,而第二部份則對應至立體狀態空間,且將一般粒子濾波器之取樣分為兩個步驟,分割取樣(partitioned sampling)的好處是可以減少所需要粒子數目以符合即時性需求。 在平面狀態空間中我們使用的影像特徵包含顏色和輪廓,這兩個特徵都可以很快地從影像中萃取出來,而立體狀態空間我們則使用了相關向量機來估測一張包含人臉的影像對應到的臉部左右轉動角度。相關向量機(relevance vector machine)是一個機器學習(machine learning)的方法,好處在於訓練時間短且可得到一個很簡單的影像與臉部左右轉動角度對應模型,且此模型可去除掉表情改變以及臉部傾角改變的影響,且簡單模型有利於快速地估測角度。 最後我們更將所提供的演算法與一個主動式平台做結合,此主動式平台會跟隨目標物位置移動,以增加目標物被拍攝之範圍。 | zh_TW |
| dc.description.abstract | Tracking the orientation of human face has long been an important research topic which has many important applications. Tracking the orientation with a monocular camera is particularly challenging because the depth information is lost due to the perspective projection. This thesis aims to provide an algorithm to track orientation of a human face with efficiency and robustness. To solve this problem, we adopt the concept of partitioned sampling to decompose the state space with 5 dimensions, namely, translation, scaling, in-plane rotation and the yaw angle of the human face. In another words, the state space is decomposed into two portions, and one portion contains the parameters describing the planar motion of the target whereas the other contains the yaw parameter. The advantage of the state space decomposition is that we can avoid large amount of particles used for such state space and divide the efforts for the two portions with different sizes of the sample set.
In this research, we first draw particles in the subspace of translation, scaling and in-plane rotation with simple cues such as color and contour. Then, we draw particles along the next subspace which contains only one dimension, the yaw angle of the target, and evaluate the yaw angle with the relevance vector machine (RVM). Here, RVM is trained for mapping an image patch containing human face to the yaw angle of human face. During the training process, we will add some perturbation of translation and scaling to the training samples of the yaw angle to make the prediction of face orientation robust to small translational errors. The learning based regression model is also insensitive to expression variation and unmodeled degree of freedom. Combining particle filter and RVM reduces the processing time and adds robustness to the performance of the system, thus making this algorithm applicable to human-machine interface with low-cost webcams and standard personal computers. The camera can be further mounted on an active platform so that the target to be tracked can be kept at the center of the image. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:45:45Z (GMT). No. of bitstreams: 1 ntu-97-R95921005-1.pdf: 1645196 bytes, checksum: 972ec64185cb2f19471d299692f085f6 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Previous work review . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Preliminaries 9 2.1 Symbol definition and rules of probability . . . . . . . . . . . . . . . 9 2.2 Bayesian filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 Particle filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.2 Resampling and degeneracy problem . . . . . . . . . . . . . . 16 2.3 Relevance vector machine . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.1 Sparse Bayesian learning . . . . . . . . . . . . . . . . . . . . . 22 2.4 3D Target modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4.1 Cylinder head model . . . . . . . . . . . . . . . . . . . . . . . 25 3 Face pose tracking algorithm 29 3.1 Relevance vector regression . . . . . . . . . . . . . . . . . . . . . . . . 30 3.1.1 Sample generation and feature transform . . . . . . . . . . . . 31 3.2 Partitioned sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.1 Adaptive particle number between partitions . . . . . . . . . . 37 3.3 Control of the active platform . . . . . . . . . . . . . . . . . . . . . . 39 3.4 Failure recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4 Implementation 43 4.1 Likelihood function for particle filter . . . . . . . . . . . . . . . . . . 43 4.1.1 Contour likelihood . . . . . . . . . . . . . . . . . . . . . . . . 44 4.1.2 Color likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.1.3 Pose estimation likelihood . . . . . . . . . . . . . . . . . . . . 48 4.2 Parameter setting of RVM . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3 Pose tracking system . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5 Experimental results 53 5.1 Environment description . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2 Results of pose tracking . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3 Results of active platform . . . . . . . . . . . . . . . . . . . . . . . . 60 5.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6 Conclusions and future work 69 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Bibliography 71 | |
| dc.language.iso | en | |
| dc.subject | 相關向量機 | zh_TW |
| dc.subject | 臉部姿態追蹤 | zh_TW |
| dc.subject | 狀態空間分割 | zh_TW |
| dc.subject | 粒子濾波器 | zh_TW |
| dc.subject | particle filter | en |
| dc.subject | relevance vector machine | en |
| dc.subject | state space partitioning | en |
| dc.subject | Face pose tracking | en |
| dc.title | 使用機器學習與分割取樣之人臉姿態追蹤方法 | zh_TW |
| dc.title | Machine Learning Based Face Pose Tracking with Partitioned Sampling | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王傑智,宋開泰,陳永耀,簡忠漢 | |
| dc.subject.keyword | 臉部姿態追蹤,狀態空間分割,粒子濾波器,相關向量機, | zh_TW |
| dc.subject.keyword | Face pose tracking,state space partitioning,particle filter,relevance vector machine, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-31 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 1.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
