請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40350
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 朱錦洲(Chin-Chou Chu) | |
dc.contributor.author | Shih-Lin Huang | en |
dc.contributor.author | 黃世霖 | zh_TW |
dc.date.accessioned | 2021-06-14T16:45:27Z | - |
dc.date.available | 2008-08-04 | |
dc.date.copyright | 2008-08-04 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-31 | |
dc.identifier.citation | 一. 中文文獻與書籍
1. 童秉綱、伊協遠、朱克勤(1994),「渦運動理論」,中國科學技術大學出版社。 2. 廖智鵬(1997),「具背景渦度下單一渦旋與障礙物之交互作用」,國立台灣大學應用力學碩士論文。 3. 許惠貞(1998),「二維單一渦旋流經圓柱之流場實驗與數值分析」,國立台灣大學應用力學碩士論文。 4. 王力弘(1998),「在科氏力效應下地形對單一渦旋的影響」,國立臺灣大學應用力學所碩士論文。 5. 顏文成(1999),「科氏效應下單一渦旋與二維圓柱之交互作用」,國立臺灣大學應用力學所碩士論文。 6. 陳弘正(2001),「正壓氣旋與地形交互作用之水工實驗與數值模擬」,國立臺灣大學應用力學所博士論文。 7. 高國傑(2001),「β平面下單一渦旋、地形與駛流間交互作用之初步研究」,國立臺灣大學應用力學所碩士論文。 8. 廖哲璋(2001),「β效應下單一渦旋與三維橢丘及二維山脊之交互作用」,國立臺灣大學應用力學所碩士論文。 9. 郭鴻基、吳俊傑與李清勝(2001),「天搖地動-颱風研究的挑戰」,科學發展月刊 29(12),859—866。 10. 張瑞旻(2002),「β平面下單一渦旋、地形與駛流間交互作用之實驗研究」,國立臺灣大學應用力學所碩士論文。 11. 黃世霖(2003),「運用粒子追跡測速法探討旋轉水槽中單一渦漩演變之流場結構」,國立臺灣大學應用力學所碩士論文。 12. 朱錦洲(2004)「具有渦流龍捲之無風扇冷卻水塔」,國際專利分類/IPC:F28C1/00。 13. 林秉煜(2004),「似龍捲渦旋之探討」,國立臺灣大學大氣科學所碩士論文。 14. 謝秉昇(2005),「背景渦度下雙渦漩交互作用之水工實驗」,國立臺灣大學應用力學所碩士論文。 15. 范振德(2005),「受科氏力影響下渦旋與熱邊界層之交互作用」,國立臺灣大學應用力學所碩士論文。 16. 王竣銘(2006),「具背景渦度下正壓渦旋不穩定性之實驗研究」,國立臺灣大學應用力學所碩士論文。 17. 林怡君(2007),「利用液晶顯像技術量測斜壓渦旋之速度及溫度場」,國立臺灣大學應用力學所碩士論文。 18. 伊曼紐著 吳俊傑、金棣譯(2007),「颱風Divine wind」,天下文化。 二. 英文文獻與書籍 1. Akhmetov, D. G., Lugovtsov, B. A., Makarenko V. G. and Nikulin, V. V., 2002, “Occurrence of tornado-like vortices in a rotating fluid under forced inertial oscillations of large amplitude,” J. Appl. Mech. Phys. 13(2), 245—248. 2. Andersen, A., Bohr, T., Stenum, B., Rasmussen, J. J. and Lautrup, B., 2003, “Anatomy of a bathtub vortex,” Phys. Rev. Lett. 91, 104502. 3. Anderson, M. R. and Baughn, J. W., 2004, “Hysteresis in liquid crystal thermography,” Journal of Heat Transfer 126, 339—346. 4. Barcilon, A., 1967, “A theoretical and experimental model for a dust devil,” J. Atmos. Sci. 24, 453—466. 5. Batalov, V., Sukhanovsky, A. and Frick, P., 2008, “Laboratory study of differential rotation in a convective rotating layer,” Geophysical and Astrophysical Fluid Dynamics. (Accepted) 6. Bellamy-Knights, P. G., 1970, “An unsteady two-celled vortex solution of the Navier—Stokes equations,” J. Fluid Mech. 41, 673—687. 7. Bluestein, H. B., 1999a, “A history of severe-storm intercept field programs,” Wea. Forecasting 14, 558—277. 8. Bluestein, H. B., 1999b, “Tornado alley: Monster storms of the Great Plains,” Oxford University Press. 9. Bluestein, H. B., Weiss, C. C. and Pazmzny, A. L., 2004, “Doppler radar observations of dust devils in Texas,” Monthly Weather Review 132, 209—224. 10. Bluth, R. T, Durkee, P. A., Seinfeld, J. H., Flagan, R. C., Russell, L. M., Crowley, P. A. and Finn, P., 1996, “Center for interdisciplinary remotely-piloted aircraft studies (CIRPAS) ,” Bull. Amer. Meteor. Soc. 77, 2691—2699. 11. Boubnov, B. M. and Golitsyn, G. S., 1986, “Experimental study of convective structures in rotating fluids,” J. Fluid Mech. 167, 503—531. 12. Boubnov, B. M. and Golitsyn, G. S., 1995, “Convection in Rotating Fluid,” Kluwer Academic, Dordrecht and Boston. 13. Boubnov, B. M. and van Heijst, G. J. F., 1994, “Experiments on convection from a horizontal plate with and without background rotation,” Exp. in Fluids 16, 155—164. 14. Burgers, J. M., 1948, “A mathematical model illustrating the theory of turbulence,” Adv. Appl. Mech. 1, 197—199. 15. Capart, H., Young, D.-L. and Zech, Y., 2002, “Voronoï imaging methods for the measurement of granular flows,” Exp. in Fluids 32, 121—135. 16. Church C. R., Snow J. T. and Agee E. M., 1977, “Tornado vortex simulation at Purdue university,” Bulletin American Meteorological Society 58(9), 900—908. 17. Church C. R., Snow J. T., Baker G. R. and Agee E. M., 1979, “Characteristics of tornado-like vortices as a function of swirl ratio: a laboratory investigation,” J. Atmos. Sci. 36, 1755—1776. 18. Church C. R., Snow J. T. and Dessens J., 1980, “Intense atmospheric vortices associated with a 1000mW fire,” Bulletin American Meteorological Society 61(7), 1755—1776. 19. Dabiri, D. and Gharib, M., 1991, “Digital particle image thermometry: The method and implementation,” Exp. in Fluids 11, 77—86. 20. Davies-Jones, R. P., 1973, “The dependence of core radius on swirl ratio in a tornado simulator,” J. Atoms. Sci. 30, 1427—1430. 21. Davies-Jones, R. P., 1986, “Tornado dynamics,” In Kessler E (ed) Thunderstorm morphology and dynamics, 2nd edn. University of Oklahoma Press, 197—236. 22. Davies-Jones, R. P., Trapp, R. J. and Bluestein, H. B., 2001, “Tornadoes and tornadic storms,” In Severe Convective Storms (C. A. Doswell III, ed). Meteor. Monogr., Am. Meteor. Soc. 28, 167—221. 23. Davies-Jones, R. P., 2006, “Tornadogenesis in supercell storms – what we know and what we don’t know,” Preprints, Symposium on the Challenges of Severe Convective Storms, Atlanta, GA, USA, Amer. Meteor. Soc., CD-ROM, 2.2. 24. Dessen, S. J., 1972, J. Appl. Met. 11, 72. 25. Emanuel, K. A., 1999, “Thermodynamic control of hurricane intensity,” Nature, 401, 665—669. 26. Emanuel, K. A., 2003, “Tropical cyclone,” Annual Review of Earth and Planetary Science 31, 75—104. 27. Escudier, M. P., Bornstein, J. and Maxworthy T., 1982, “The Dynamics of Confined Vortices,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical 382(1783), 335—360. 28. Escudier, M. P. and Zehnder, Z., 1982, “Vortex-flow regimes,” J. Fluid Mech. 115, 105—121. 29. Escudier, M. P., 1984, “Observations of the flow produced in a cylindrical container by a rotating endwall,” Exp. in Fluids 2, 189—196. 30. Faler, J. H. and Leibovich, S., 1978, “An experimental map of the internal structure of a vortex breakdown,” J. Fluid Mech. 86, 313—335. 31. Fitzjarrald, D. E., 1973, “A laboratory simulation of convective vortices,” J. Atmos. Sci. 30, 894—902. 32. Flór, J. B. and Eames, I., 2002, “Dynamics of monopolar vortices on a topographic beta-plane,” J. Fluid Mech. 456, 353—376. 33. Fujisawa N and Hashizume Y, 2001, “An uncertainty analysis of temperature and velocity measured by a liquid crystal visualization technique,” Measurement Science and technology 12, 1235—1242. 34. Fugita, T. E, 1972, AMRP Res. Paper 97, U. of Chicago. 35. Fugita, T. T, 1981, “Tornadoes and downbursts in the context of generalized planetary scales,” J. Atmos. Sci. 38, 1511—1534. 36. Garg, A. K., Leibovich, S., 1979, “Special characteristics of vortex breakdown flow fields,” Phys. Fluids 22, 2053—2064. 37. Gillies, G., Withenell, G.. and Glass, J., 1974, “Laboratory production of tornado-like vortices,” J. Atmos. Sci. Notes and correspondence 31, 2231—2233. 38. Golden, J. H., 1974a, “The life cycle of Florida Keys’ waterspouts. I,” J. Appl. Meteor. 13, 676—692. 39. Golden, J. H., 1974b, “Scale-interaction implications for the waterspout life cycle. II,” J. Appl. Meteor. 13, 693—709. 40. Grishin, A. M., Golovanov, A. N., Kolesnikov, A. A., Strokatov, A. A. and Tsvyk, R. Sh., 2005, “Experimental study of thermal and fire tornados,” Doklady Physics 50(2), 66—68. 41. Hide, R. and Ibbetson, A., 1968, “On slow transverse flow past obstacles in a rapidly rotating fluid,” J. Fluid Mech. 32(2), 251—272. 42. Holland, G. J., 1980, “An analytic model of wind and pressure profiles in hurricans,” Monthly Weather Review 108, 1212—1218. 43. Hopfinger, E. J. and van Heijst, G. J. F., 1993, “Vortices in rotating fluids,” Annu. Rev. Fluid. Mech. 25, 241—289. 44. Hopfinger, E. J., Browand, F. K. and Gagne, Y., 1982, “Turbulence and waves in a rotating tank,” J. Fluid Mech. 125, 505—534. 45. Hsu, C. T. and Fattahi, B., 1976, “Mechanism of tornado funnel formation,” Physics of Fluids, 19(12), 1853—1857. 46. Jischke, M. and Parang, M., 1974, “Properties of simulated tornado-like vortices,” J. Atmos. Sci. 31, 506—512. 47. Lee, W.-C., and J. Wurman, 2005, “The diagnosed structure of the Mulhall tornado,” J. Atmos. Sci., 62, 2373—2393. 48. Leibovich, S., 1978, “The structure of vortex breakdown,” Annu. Rev. Fluid Mech. 10, 221—246. 49. Lewellen, W. S., 1976, “Theoretical models of the tornado vortex,” Proc. Symp. On Tornadoes: Assessment of Knowledge and Implications for Man, Lubbock, Tx, Texas Tech University, 107—143. 50. Lewellen, W. S., 1993, “Tornado vortex theory. The Tornado: Its Structure, Dynamics, Prediction, and Hazards,” Geophys. Monogr. 79, Amer. Geophyss. Union, 19—39. 51. Lin, I. I., Liu, W. T., Wu, C. C., Chiang, J. C. H, and Sui, C. H., 2003, “Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling,” Geophys. Res. Lett. 30(3), 1131, doi:10.1029/2002GL015674. 52. Liu, S. K., Fu, Z. T., Liu, S. D. et al., 2004, “A theory on the funnel structure of tornado,” Chinese J. Geophys. (in Chinese) 47(6), 959—963. 53. Long, R. R., 1956, “Sources and sinks at the axis of a rotating liquid,” Quart. Journ. Mech. And Applied Math. 4(4), 385—393. 54. Long, R. R., 1958, “Vortex motion in a viscous fluid,” J. Meteo. 15, 108—112. 55. Lugt, H. J., 1989c, “Vortex Breakdown in Atmospheric Columnar Vortices,” Bull. Am. Meteor. 70(12), 1526—1537. 56. Lugt, H. J., 1995, “Vortex flow in nature and technology,” Krieger, Malabar, Florida. 57. Lugt, H. J., 1996, “Introduction to vortex theory,” Vortex Flow Press, Potomac, Maryland. 58. Lucca-Negro, O. and O'Doherty, T., 2001, “Vortex breakdown: a review,” Progress in Energy and Combustion Science 27, 431—481. 59. Lugovtsov, B. A., 2002, “On the mechanism of formation of tornado-like vortices in a rotating fluid,” J. Appl. Mech. Phys. 13(2), 237—244. 60. Lundgren, T. S., 1985, “The vortical flow above the drain-hole in a rotating vessel,” J. Fluid Mech. 155, 381—412. 61. Rott, N., 1958, “On the viscous core of a line vortex,” Z. Angew. Math. Phys. 9, 543—553. 62. Makarenko, V. G. and Tarasov, V. F., 1987, “Experimental model of a tornado,” J. Appl. Mech. Phys. 28(5), 750—756. 63. Masson, P. J., 1975, “Forces on bodies moving transversely through a rotating fluid,” J. Fluid Mech. 71(3), 577—599. 64. Mattner T. W., Joubert, P. N. and Chong, M. S., 2002, “Vortical flow. Part 1. Flow through a constant-diameter pipe,” J. Fluid Mech. 463, 259—291. 65. Maxworthy, T., 1971, “On the structure of concentrated, columnar vortices,” Astronaut. Acat. 17, 363—374. 66. Maxworthy, T., 1972, “On the structure of concentrated, columnar vortices,” Astronaut. Acat. 17, 363—374. 67. Maxworthy, T., 1973, “A vorticity source for large-scale dust devils and other comments on naturally occurring columnar vortices,” J. Atmos. Sci. 30, 1717—1722. 68. Maxworthy, T., 1982, “The laboratory modeling of the atmospheric vortices: a critical review,” intense atmospheric vortices, Springer, Berlin, 229—246. 69. Mullen, J. B. and Maxworthy, T., 1977, “A laboratory model of dust devil vortices,” Dyn. Atmos. Oceans 1, 181—214. 70. Morton, B. R., 1963, “Model experiments for vortex columns in the atmosphere,” Nature 197, 840—842. 71. Nezlin, M. V. and Snezhkin, E. N., 1993, Rossby vortices, spiral structures, solitons: astrophysics and plasma physics in shallow water experiments, Springer, Berlin. 72. Noguchi, T., Yukimoto, S., Kimura, R. and Niino, H., 2003, “Structure and instability of sink vortex,” Proceedings of PSFVIP-4, F4080. 73. Oseen, C. W., 1911, Ark. Mat. Astr. Fys. 7. 74. Phillips, W. R. C., 1985, “On Vortex Boundary Layers,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 400(1819), 253—261. 75. Peterson, R. E., 1992, “Johannes Letzmann: a pioneer in the study of tornadoes,” Wea. Forecasting 7, 166—184. 76. Ramos J. I. and Somer, H. T., 1985, “Swirling flow in a research combustor,” J. AIAA 23(2), 241—248. 77. Rosenzweig, M. L., Ross, D. H. and Lewellen, W. S., 1962, “On secondary flows in jet-driven vortex tubes,” J. Aerospace Sci. 29, 1142—1143. 78. Rothfusz, L. P. and Lilly, D. K., 1989, “Quantitative and theoretical analyses of an experimental helical vortex,” J. Atmos. Sci. 46(14), 2265—2279. 79. Rotunno, R., 1979, “A study in tornado-like vortex dynamics,” J. Atmos. Sci. 36, 140—155. 80. Rotunno, R., 1984, “An investigation of a three-dimensional asymmetric vortex,” J. Atmos. Sci. 41(2), 283—298. 81. Sarker, P., Haan, F., Gallus, Jr, W. G., Le, K. and Wurman, J., 2005, “Velocity measurements in a laboratory tornado simulator and their comparison with numerical and full-scale data”. 82. Shay, L. K., Goni, G. J. and Black, P. G., 2000, “Effects of a warm oceanic feature on hurricane opal,” Mon. Wea. Rev. 128, 1366—1383. 83. Sinclair, P. C., 1973, “The low structure of dust devils,” J. Atmos. Sci. 30, 1599—1619. 84. Snow, J. T., Church, C. R. and Barnhart, B. J., 1980, “An investigation on the surface pressure fields beneath simulated tornado cyclones,” J. Atmos. Sci. 37, 1013—1026. 85. Snow, J. T., 1982, “A review of recent advances in tornado vortex dynamics,” Rev. Geophys. Space Phys. 20, 953—964. 86. Stegner, A. and Zeitlin, V., 1998, “From quasi-geostrophic to strongly nonlinear monopolar vortices in a paraboloidal shallow-water-layer experiment,” J. Fluid Mech. 356, 1—24. 87. Stewartson, K., 1967, “On slow transverse motion on Ekman layer instability,” J. Fluid Mech. 30, 357—369. 88. Sullivan, R. D., 1959, “A two-cell vortex solution of the Navier-stoke equation,” J. Aero/Space Sci. 26, 767—768. 89. Saffman, P. G. and Baker, G. R., 1979, “Vortex interations,” Ann. Rev. Fluid Mech. 11, 95—112. 90. Takematsu, M. and Kita, T., 1988, “The behavior of isolated free eddies in a rotating fluid: Laboratory experiment,” Fluid Dynamics Research 3(1-4), 400—406. 91. Trapp, R. J. and Davies-Jones, R. P., 1997, “Tornadogenesis with and without a dynamic pipe effect,” J. Atmos. Sci. 54, 113—133. 92. Trieling, R. R., Linssen, A. H., and van Heijst, G. J. F., 1998, “Monopolar vortices in an irrotational annular shear flow,” J. Fluid Mech. 360, 273—294. 93. Turner, J. S. and Lilly, D. K., 1963, “The carbonated-water tornado vortex,” J. Atmos. Sci. 20, 468—471. 94. Turner, J. S., 1966, “The constraints imposed on tornado-like vortices by the top and bottom boundary conditions,” J. Fluid Mech. 25, 377—400. 95. Turner, J. S., 1969, “Buoyant plumes and thermals,” Ann. Rev. Fluid Mech. 1, 29—44. 96. Turner, J. S., 1973, “Buoyancy effects in fluids,” Cambridge University Press, 165—173. 97. Wakimoto, R. M. and Atkins, N. T., 1996, “Observations of the origins of rotation: The Newcastle tornado during VORTEX 94,” Monthly Weather Review 124, 384—407. 98. Ward, N. B., 1972, “The exploration of certain features of tornado dynamics using a laboratory model,” J. Atmos. Sci. 29, 1194—1204. 99. Wood, V. T., 1992, “Whirlwind formation at a burning oil supertanker in the gulf of Mexico,” Monthly Weather Review 120, 371—372. 100. Wurman, J., Straka, J. M. and Rasmussen, E. N., 1996, “Fine-scale Doppler rader observations of tornadoes,” Science 272, 1774—1777. 101. Wurman, J., Straka, J. M., Rasmussen, E. N., Randall, M. and Zahrai, A., 1997, “Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar,” J. Atmos. Oceanic Technol., 14, 1502—1512. 102. Ying, S. J. and Chang, C. C., 1970, “Exploratory model study of tornado-like vortex dynamics,” J. Atmos. Sci. 27(1), 3—14. 103. Zhang, J. S. and Zhou, S. N., 1996, “Suction control by man-made hurricane,” Journal of China University of Mining and Technology 25(1), 1—5. 104. Zhao, S., Xiong X., Hu, F. and Zhu, J., 2001, “Rotating annulus experiment: Large-scale helical soliton in the atmosphere,” Phys. Rev. E. 64, 056621. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40350 | - |
dc.description.abstract | 本論文包括三部分,分別是單一渦旋流場由單胞結構演變至雙胞之過程、似龍捲漏斗雲形成之探討與渦旋熱效應之研究。
第一部分為探討旋轉水槽中,單一渦旋流場由單胞結構演變至雙胞之過程。實驗上以巧妙的機制,藉由虹吸管的方式自水槽中抽吸部分流體後移開所導致。在渦旋到達類似二維的正壓渦旋前,整個演變的過程可區分為三個階段:(1)在汲取階段產生單胞渦旋;(2)在虹吸管移離水面瞬間,高速旋轉流體將空氣自自由液面捲入至穿越整層流體而達底層,導致雙胞渦旋的產生;(3)由邊界層往渦心幅合的流體,逐步將雙胞結構的流場由旋轉軸的底層推往液面,產生像倒圓錐形狀一塊獨立的環流區域。最終渦旋演變為穩定的近二維正壓旋渦,而包圍渦心的外圍流場則保持著地轉平衡狀態。在單胞渦旋時,吾人以Burgers的旋渦模型來描繪出此種流場結構;然而在雙胞渦旋時,Sullivan和Bellamy-Knights的旋渦模型卻無法完整地描繪出此種流場結構。實驗上,藉由定性的染料施放法及定量的粒子追跡測速法可準確的得到流場中流體的細部資訊,諸如渦旋流場結構、速度及渦度分布圖,及自由液面下沉量等。如此一連串複雜的流場行為可幫助我們解釋部分尚未發現或未確定的龍捲風概念性模型。 第二部分是似龍捲漏斗雲形成之探討。吾人以吸入法在水槽中心產生單一渦旋,在生成渦旋的同時,從渦旋上下、層注入紅、綠色染料來模擬及顯影似龍捲漏斗雲的形成與成長過程。藉由酒精、水、染料和鹽來調配不同比重之紅色染料(Specific weight, ρ = 1.10、1.05及0.97),而綠色染料比重固定為1.04。實驗顯示(1)當在染料比重小於水時,會產生正的浮力,增加渦旋強度,使其達到底部的時間較久;(2)當染料比重接近於水時,渦旋強度較不受影響;(3)在染料比重略比水來得重時,會產生負的浮力,減弱渦旋強度,使其縮短到達底部的時間。經由實驗的探討可幫助我們解釋部分漏斗雲形成的原因與演變之過程。 最後第三部分為渦旋熱效應之研究。藉由水工模擬實驗,探討具有背景渦度下渦漩熱效應現象,吾人將著重在熱邊界層的形成、熱邊界層與渦旋之交互作用與渦旋過冷、熱帶之影響。實驗上引進新穎之全域速度與溫度場量測方法—粒子影像速度與測溫法(Particle Image Velocimetry/Thermometry, PIV/T),可同時量測流場中二維剖面的速度與溫度分布。實驗結果顯示(1)冷、熱邊界層確實於冷、熱底板的生成,且溫度梯度自周圍往中心漸增;(2)冷、熱邊界層之存在會影響渦旋之熱力結構,冷邊界層易造成渦旋底部的穩定,有抑制渦旋的效果,而熱邊界層容易形成渦旋底部的不穩定,有增強渦旋的效果;(3)渦旋強度與β平面下之路徑變化會受到溫度效應影響;冷渦旋較常溫渦旋之路徑偏北,常溫渦旋又較熱渦旋之路徑偏北,且熱渦旋之渦旋強度大於常溫渦旋,而常溫渦旋又大於冷渦旋。經由初步的實驗探討可幫助我們進一步瞭解及重視自然界中渦旋與環境熱效應之問題,如颱風與龍捲風。 | zh_TW |
dc.description.abstract | The thesis consists of three parts: transition of a swirling vortex from one-celled to two-celled structure in a rotating tank, evolution of funnel-like vortex structure and the thermal effect on vortex motion.
In part I, we investigate the transition of a swirling vortex from one-celled to two-celled vortex structure in a rotating tank. The main idea is to initiate the flow by siphoning fluid out of the tank and then lift the siphoning mechanism off the water in a short period of time. Before it reaches a state of quasi-two-dimensionality, the core region of the vortex can be roughly divided into three stages. (1) A stage of siphoning induces the formation of the one-celled vortex. (2) A stage of downward jet impingement triggers the transition of the vortex into the two-celled one. (3) A stage of detachment of the inner cell leads to a cup-like recirculation zone, which is pushed upward by an axial flow from the boundary layer. This eventually develops into a stable quasi-two-dimensional barotropic vortex. The core region is enclosed by an outer region which is in cyclostrophic balance. In siphoning stage, the flow pattern can be well fitted by Burgers' vortex model. However, in the post-siphoning stage, the present data shows a flow pattern different from the existing two-celled models of Sullivan and Bellamy-Knights. Flow details, including flow patterns, velocity profiles and surface depressions were measured and visualized by particle image velocimetry, particle tracking velocimetry and the dye-injection method with various colors. The one-celled and two-celled flow structures are also similar to the conceptual images of the one and two-celled tornadoes proposed in the literature. In part II, a swirling vortex is visualized by red/green dye-injection from top/bottom in order to simulate the formation and transition of funnel-like structure. In particular, the time needed for touch down of the vortex is considered. The specific weight of the red dye will be adjusted by alcohol, water and salt (ρred = 0.97, 1.05 and 1.10); however, the specific weight of the green dye is fixed (ρgreen = 1.04). It is shown that (1) when the specific weight of the red dye is smaller than water, a positive buoyant force will be produced and the strength of vortex will be increased, resulting in taking more time for the vortex to touch down; (2) when the specific weight of the red dye is near to that of water, the time needed for touch down will be little influenced; and (3) when the specific weight of the red dye is larger than water, a negative buoyant force will be produced and the strength of vortex will be decreased, resulting in taking less time for the vortex to touch down. From experimental investigation, we can make an analog and interpret characteristics of tornado-funnel structures in nature. In part III, the formation of thermal boundary layer, the interaction of thermal boundary layer and vortex, and their effects on the vortex passing the cold/hot belt are investigated. A PIV/T (Particle Image Velocimetry/Thermometry) technique is developed for measuring quantitatively velocity and temperature simultaneously. It is shown that (1) a cold/hot boundary layer will be generated in the thermal plate and the temperature gradient will gradually increase from the ambient to center of plate; (2) the dynamics of a swirling vortex including, the strength and path of the vortex, will be influenced by the cold/hot boundary layer; and (3) a colder vortex moves to the north compared to the trajectory of the vortex in the environment of room-temperature. On the other hand, a hotter vortex moves to the south under the thermal effect. A hotter vortex will be stronger than a colder vortex. These results may shed some light on the thermal effects on vortices in nature, such as tornadoes or typhoons. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T16:45:27Z (GMT). No. of bitstreams: 1 ntu-97-D92543013-1.pdf: 13836352 bytes, checksum: 7160652763d44c755d1ea105a2eaab65 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 口試委員會審定書…………………………………………………… i
誌謝………………………………………………………………… ii 中文摘要…………………………………………………………… iii 英文摘要……………………………………………………………… v 目錄………………………………………………………………… vii 圖目錄……………………………………………………………… xi 表目錄……………………………………………………………… xx 第一章 緒論…………………………………………………………………… 1 1.1研究動機與目的………………………………………………… 1 1.2全文概述………………………………………………………… 2 1.3文獻回顧………………………………………………………… 8 1.3.1自然界渦旋特徵……………………………………………… 8 1.3.2渦旋實驗模型………………………………………………… 13 1.3.2.1外力驅動模型……………………………………………… 14 1.3.2.2對流實驗模型……………………………………………… 24 1.3.2.3旋轉水槽實驗模型………………………………………… 25 1.3.2.4其他實驗模型……………………………………………… 33 1.3.2.5 Maxworthy (1972)颱風實驗模型……………………… 36 1.3.2.6渦旋崩潰實驗模型………………………………………… 37 1.3.3龍捲風的觀測………………………………………………… 40 1.3.4龍捲風渦旋相關之研究……………………………………… 42 第二章 理論基礎………………………………………………… 43 2.1不具軸向流動之渦旋模型……………………………………… 44 2.1.1二維勢渦模型(Potential vortex model)………………… 44 2.1.2 Rankine複合渦模型(Rankine combined vortex model) 45 2.1.3 Oseen渦旋模型和Taylor渦旋模型………………………… 46 2.2具有軸向流動之渦旋模型……………………………………… 48 2.2.1 Burgers單胞渦旋結構模型………………………………… 49 2.2.2 Sullivan雙胞渦旋結構模型……………………………… 51 2.2.3 Long渦旋模型……………………………………………… 53 2.2.4 Bellamy-Knights雙胞渦旋結構模型……………………… 54 第三章 實驗方法…………………………………………………… 61 3.1旋轉水槽………………………………………………………… 61 3.1.1第I代旋轉水槽……………………………………………… 61 3.1.2第II代旋轉水槽……………………………………………… 62 3.1.3第III代旋轉水槽…………………………………………… 63 3.2實驗相關設備…………………………………………………… 64 3.2.1渦漩產生機構………………………………………………… 64 3.2.2染料施放系統………………………………………………… 68 3.2.3控制系統……………………………………………………… 69 3.2.4照明設備……………………………………………………… 69 3.2.5影像攫取系統………………………………………………… 70 3.2.6三維立體粒子影像測速儀…………………………………… 73 3.2.7光源…………………………………………………………… 73 3.2.8前鍍膜面鏡…………………………………………………… 77 3.2.9光頁產生器…………………………………………………… 77 3.2.10顯影微粒(Seeding Particles)…………………………… 79 3.2.11 YAMAHA單軸機械手臂……………………………………… 80 3.3渦旋產生法……………………………………………………… 81 3.3.1攪拌法(stirred method) ………………………………… 81 3.3.2吸入法(suction method) ………………………………… 81 3.3.3兩同心套桶轉動所致渦旋…………………………………… 82 3.3.4喇叭狀虹吸管中間為實心圓柱擋板所致渦旋……………… 82 3.4流場顯影………………………………………………………… 82 3.4.1染料注入法…………………………………………………… 82 3.4.2雷射光頁顯像法……………………………………………… 82 3.4.3氫氣泡顯影法(Hydrogen bubble)………………………… 83 3.5影像分析方法…………………………………………………… 83 3.5.1使用相機長時間曝光(Long exposure time) …………… 83 3.5.2粒子追跡測速法(Particle tracking velocity, PTV) … 84 3.5.3粒子影像測速儀(Particle imaging velocimetry, PIV) 85 3.5.4液晶顯像技術(PIV/T)……………………………………… 86 第四章 單胞渦旋結構演變至雙胞渦旋之探討………………… 88 4.1 實驗方法……………………………………………………… 88 4.2 PIV流場量測與顯影…………………………………………… 89 4.2.1 Case I (Ro ~ 18)………………………………………… 90 4.2.2 Case II (Ro ~ 8)………………………………………… 105 4.3單一渦旋演變的三階段………………………………………… 111 4.3.1汲取階段(The siphoning stage)………………………… 111 4.3.2噴射衝擊階段(The downward jet impingement stage)… 124 4.3.3內層渦胞分離階段(The detachment stage of the inner cell)……………………… 128 4.4與龍捲渦旋之比較……………………………………………… 130 4.5結論……………………………………………………………… 132 第五章 似龍捲漏斗雲形成之探討……………………………… 133 5.1簡介漏斗雲形成之機制………………………………………… 133 5.2旋轉水槽實驗條件……………………………………………… 133 5.3理論基礎………………………………………………………… 134 5.4參數a、b與r0之關係…………………………………………… 139 5.5實驗結果………………………………………………………… 141 5.6結論與未來發展………………………………………………… 146 第六章 環境熱效應……………………………………………… 148 6.1研究背景與目的………………………………………………… 148 6.2在背景效應下熱邊界層之發展………………………………… 156 6.3單一渦漩受冷、熱對流效應影響下之水工實驗……………… 158 6.4單一渦漩通過一加熱帶或冷卻帶相關現象的水工實驗……… 163 6.5結論與未來發展………………………………………………… 168 第七章 總結與未來研究方向…………………………………… 170 7.1總結……………………………………………………………… 170 7.2未來研究方向…………………………………………………… 171 參考文獻…………………………………………………………… 174 | |
dc.language.iso | zh-TW | |
dc.title | 具背景效應下單一渦旋之生成、演變及環境熱效應之探討 | zh_TW |
dc.title | Generation, Transition and Thermal Effect of a Swirling Vortex with Background Vorticity | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 張建成(Chien-Cheng Chang) | |
dc.contributor.oralexamcommittee | 張家歐,鄒鴻生(Horn-Sen Tzou),陳瑞琳,郭志禹,王繼宗,郭光輝 | |
dc.subject.keyword | 旋轉水槽,單胞與雙胞渦旋,漏斗雲結構,粒子追跡測速法,粒子影像測溫法, | zh_TW |
dc.subject.keyword | Rotating tank,One-celled and two-celled vortex,Funnel-like structure;Particle Tracking Velocimetry (PTV),Particle Image Velocimetry/Thermometry (PIV/T), | en |
dc.relation.page | 184 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-08-01 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 13.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。