請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40345
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張震東(Geen-Dong Chang) | |
dc.contributor.author | Ping-Tsun Tsai | en |
dc.contributor.author | 蔡秉村 | zh_TW |
dc.date.accessioned | 2021-06-14T16:45:20Z | - |
dc.date.available | 2009-08-04 | |
dc.date.copyright | 2008-08-04 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-31 | |
dc.identifier.citation | 35
VI. References Bansal, D., Miyake, K., Vogel, S., Groh, S., Chen, C.-C., Williamson, R., McNeil, P., & Campbell, K. (2003). Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature , 423 (6936), 168-172. Bement, W., Yu, H., Burkel, B., Vaughan, E., & Clark, A. (2007). Rehabilitation and the single cell. Current Opinion in Cell Biology , 19 (1), 95-100. Benz, R., & Zimmermann, U. (1981). The resealing process of lipid bilayers after reversible electrical breakdown. Biochimica et biophysica acta , 640 (1), 169-178. Bi, G., Alderton, J., & Steinhardt, R. (1995). Calcium-regulated exocytosis is required for cell membrane resealing. The Journal of Cell Biology , 131 (6 Pt 2), 1747-1758. Borgonovo, B., Cocucci, E., Racchetti, G., Podini, P., Bachi, A., & Meldolesi, J. (2002). Regulated exocytosis: a novel, widely expressed system. Nature cell biology , 4 (12), 955-962. Chang, D., & Reese, T. (1990). Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophysical journal , 58 (1), 1-12. Chouinard, N., Valerie, K., Rouabhia, M., & Huot, J. (2002). UVB-mediated activation of p38 mitogen-activated protein kinase enhances resistance of normal human keratinocytes to apoptosis by stabilizing cytoplasmic p53. The Biochemical journal , 365 (Pt 1), 133-145. Clarke, M., & McNeil, P. (1992). Syringe loading introduces macromolecules into living mammalian cell cytosol. Journal of Cell Science , 102 ( Pt 3), 533-541. Clarke, M., Caldwell, R., Chiao, H., Miyake, K., & McNeil, P. (1995). Contraction-induced cell wounding and release of fibroblast growth factor in heart. Circulation research , 76 (6), 927-934. Cocucci, E., Racchetti, G., Podini, P., Rupnik, M., & Meldolesi, J. (2004). Enlargeosome, an exocytic vesicle resistant to nonionic detergents, undergoes endocytosis via a nonacidic route. Molecular biology of the cell , 15 (12), 5356-5368. 36 Doherty, K. (2005). Normal myoblast fusion requires myoferlin. Development , 132 (24), 5565-5575. Doherty, K., Cave, A., Davis, D., Delmonte, A., Posey, A., Earley, J., Hadhazy, M., & McNally, E. (2005). Normal myoblast fusion requires myoferlin. Development , 132 (24), 5565-5575. Elliget, K., Phelps, P., & Trump, B. (1991). HgCl2-induced alteration of actin filaments in cultured primary rat proximal tubule epithelial cells labelled with fluorescein phalloidin. Cell biology and toxicology , 7 (3), 263-280. Heron-Milhavet, L. (2002). Insulin-like Growth Factor I Induces MDM2-dependent Degradation of p53 via the p38 MAPK Pathway in Response to DNA Damage. Journal of Biological Chemistry , 277 (18), 15600-15606. Huang, Y.-T., Hwang, J.-J., Lee, L.-T., Liebow, C., Lee, P.-P., Ke, F.-C., Lo, T.-B., Schally, A., & Lee, M.-T. (2002). Inhibitory effects of a luteinizing hormone-releasing hormone agonist on basal and epidermal growth factor-induced cell proliferation and metastasis-associated properties in human epidermoid carcinoma A431 cells. International journal of cancer Journal international du cancer , 99 (4), 505-13. Hwang, J., Zhang, C., & Patterson, C. (2005). C-terminus of heat shock protein 70-interacting protein facilitates degradation of apoptosis signal-regulating kinase 1 and inhibits apoptosis signal-regulating kinase 1-dependent apoptosis. Cell stress & chaperones , 10 (2), 147-156. Ichijo, H. (1999). From receptors to stress-activated MAP kinases. Oncogene , 18 (45), 6087-6093. Idone, V., Tam, C., Goss, J., Toomre, D., Pypaert, M., & Andrews, N. (2008). Repair of injured plasma membrane by rapid Ca2+-dependent endocytosis. The Journal of Cell Biology , 180 (5), 905-914. Jaiswal, J., Andrews, N., & Simon, S. (2002). Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells. The Journal of Cell Biology , 159 (4), 625-635. Kampinga, H., Kanon, B., Salomons, F., Kabakov, A., & Patterson, C. (2003). 37 Overexpression of the cochaperone CHIP enhances Hsp70-dependent folding activity in mammalian cells. Molecular and Cellular Biology , 23 (14), 4948-4958. Kasai, H., Kishimoto, T., Liu, T., Miyashita, Y., Podini, P., Grohovaz, F., & Meldolesi, J. (1999). Multiple and diverse forms of regulated exocytosis in wild-type and defective PC12 cells. Proceedings of the National Academy of Sciences of the United States of America , 96 (3), 945-949. Khurana, A., Nakayama, K., Williams, S., Davis, R., Mustelin, T., & Ronai, Z. (2006). Regulation of the Ring Finger E3 Ligase Siah2 by p38 MAPK. Journal of Biological Chemistry , 281 (46), 35316-35326. Kim, A., Khursigara, G., Sun, X., Franke, T., & Chao, M. (2001). Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Molecular and Cellular Biology , 21 (3), 893-901. Lennon, N. (2003). Dysferlin Interacts with Annexins A1 and A2 and Mediates Sarcolemmal Wound-healing. Journal of Biological Chemistry , 278 (50), 50466-50473. Lorusso, A., Covino, C., Priori, G., Bachi, A., Meldolesi, J., & Chieregatti, E. (2006). Annexin2 coating the surface of enlargeosomes is needed for their regulated exocytosis. The EMBO Journal , 25 (23), 5443-5456. Martinez, I., Chakrabarti, S., Hellevik, T., Morehead, J., Fowler, K., & Andrews, N. (2000). Synaptotagmin VII regulates Ca(2+)-dependent exocytosis of lysosomes in fibroblasts. The Journal of Cell Biology , 148 (6), 1141-49. Mcneil, A., Rescher, U., Gerke, V., & Mcneil, P. (2006). Requirement for Annexin A1 in Plasma Membrane Repair. Journal of Biological Chemistry , 281 (46), 35202-35207. McNeil, P., & Khakee, R. (1992). Disruptions of muscle fiber plasma membranes. Role in exercise-induced damage. The American journal of pathology , 140 (5), 1097-1109. Mcneil, P., & Steinhardt, R. (2003). Plasma membrane disruption: repair, prevention, adaptation. Annual Review of Cell and Developmental Biology , 19, 697-731. McNeil, P., & Terasaki, M. (2001). Coping with the inevitable: how cells repair a torn surface membrane. Nature cell biology , 3 (5), E124-129. 38 McNeil, P., & Warder, E. (1987). Glass beads load macromolecules into living cells. Journal of Cell Science , 88 ( Pt 5), 669-678. McNeil, P., Clarke, M., & Miyake, K. (2001). Cell wound assays. Current protocols in cell biology / editorial board, Juan S Bonifacino [et al] , Chapter 12, Unit 12.4. Mcneil, P., Miyake, K., & Vogel, S. (2003). The endomembrane requirement for cell surface repair. Proceedings of the National Academy of Sciences of the United States of America , 100 (8), 4592-4597. McNeil, P., Murphy, R., Lanni, F., & Taylor, D. (1984). A method for incorporating macromolecules into adherent cells. The Journal of Cell Biology , 98 (4), 1556-1564. McNeil, P., Vogel, S., Miyake, K., & Terasaki, M. (2000). Patching plasma membrane disruptions with cytoplasmic membrane. Journal of Cell Science , 113 ( Pt 11), 1891-1902. Meldolesi, J. (2003). Surface wound healing: a new, general function of eukaryotic cells. Journal of cellular and molecular medicine , 7 (3), 197-203. Mitchell, H., Petersen, N., & Buzin, C. (1985). Self-degradation of heat shock proteins. Proceedings of the National Academy of Sciences of the United States of America , 82 (15), 4969-4973. Miyake, K., & Mcneil, P. (2003). Mechanical injury and repair of cells. Critical Care Medicine , 31 (8 Suppl), S496-501. Miyake, K., McNeil, P., Suzuki, K., Tsunoda, R., & Sugai, N. (2001). An actin barrier to resealing. Journal of Cell Science , 114 (Pt 19), 3487-3494. Mott, J., Zhang, D., & Zassenhaus, H. (2005). Mitochondrial DNA mutations, apoptosis, and the misfolded protein response. Rejuvenation research , 8 (4), 216-226. Patil, C., & Kirkwood, K. (2007). p38 MAPK signaling in oral-related diseases. Journal of dental research , 86 (9), 812-825. Phelps, P., Smith, M., & Trump, B. (1989). Cytosolic ionized calcium and bleb 39 formation after acute cell injury of cultured rabbit renal tubule cells. Laboratory investigation; a journal of technical methods and pathology , 60 (5), 630-642. Qian, S.-B., Mcdonough, H., Boellmann, F., Cyr, D., & Patterson, C. (2006). CHIP-mediated stress recovery by sequential ubiquitination of substrates and Hsp70. Nature , 440 (7083), 551-555. Reddy, A., Caler, E., & Andrews, N. (2001). Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell , 106 (2), 157-169. Schägger, H., & von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical biochemistry , 166 (2), 368-379. Sokac, A., Schietroma, C., Gundersen, C., & Bement, W. (2006). Myosin-1c couples assembling actin to membranes to drive compensatory endocytosis. Developmental Cell , 11 (5), 629-640. Steinhardt, R., Bi, G., & Alderton, J. (1994). Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science (New York, NY) , 263 (5145), 390-393. Subramanian, R. (2004). Interaction of apoptosis signal-regulating kinase 1 with isoforms of 14-3-3 proteins. Experimental Cell Research , 294 (2), 581-591. Swanson, J., & McNeil, P. (1987). Nuclear reassembly excludes large macromolecules. Science , 238 (4826), 548-550. Terasaki, M., Miyake, K., & McNeil, P. (1997). Large plasma membrane disruptions are rapidly resealed by Ca2+-dependent vesicle-vesicle fusion events. The Journal of Cell Biology , 139 (1), 63-74. Togo, T., Krasieva, T., & Steinhardt, R. (2000). A decrease in membrane tension precedes successful cell-membrane repair. Molecular biology of the cell , 11 (12), 4339-4346. Traub, O., & Berk, B. (1998). Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arteriosclerosis, thrombosis, and vascular biology , 18 (5), 677-685. Trump, B., & Berezesky, I. (1995). Calcium-mediated cell injury and cell death. The FASEB journal : official publication of the Federation of American Societies for Experimental Biology , 9 (2), 219-228. Wang, S., Zhang, J., Zhang, Y., Kern, S., & Danner, R. (2008). Nitric oxide-p38 MAPK signaling stabilizes mRNA through AU-rich element-dependent and -independent mechanisms. Journal of Leukocyte Biology , 83 (4), 982-990. Wienisch, M., & Klingauf, J. (2006). Vesicular proteins exocytosed and subsequently retrieved by compensatory endocytosis are nonidentical. Nature Neuroscience , 9 (8), 1019-1027. Yasuda, S., Townsend, D., Michele, D., Favre, E., Day, S., & Metzger, J. (2005). Dystrophic heart failure blocked by membrane sealant poloxamer. Nature , 436 (7053), 1025-1029. Zhang, R., Luo, D., Miao, R., Bai, L., Ge, Q., Sessa, W., & Min, W. (2005). Hsp90–Akt phosphorylates ASK1 and inhibits ASK1-mediated apoptosis. Oncogene , 24 (24), 3954-3963. Zhao, W., Liu, M., & Kirkwood, K. (2007). p38 Stabilizes Interleukin-6 mRNA via Multiple AU-rich Elements. Journal of Biological Chemistry , 283 (4), 1778-1785. Zhelev, D., & Needham, D. (1993). Tension-stabilized pores in giant vesicles: determination of pore size and pore line tension. Biochimica et biophysica acta , 1147 (1), 89-104. Zhu, Y. (2002). p38 Mitogen-activated Protein Kinase Mediates Hypoxic Regulation of Mdm2 and p53 in Neurons. Journal of Biological Chemistry , 277 (25), 22909-22914. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40345 | - |
dc.description.abstract | 細胞膜的破裂,對於處在正常生理所產生的外力情況下的細胞,譬如心肌或者肌肉細胞, 是常見的細胞損傷之ㄧ 。目前認為鈣離子活化的胞吐作用(exocytosis)使細胞能夠利用胞器的內膜(endomembrane)暫時修補破損的細胞膜。除了許多現象的描述之外,對於這個領域的詳細分子機制多年來一直沒有重大進展,主要因為缺乏一套製造大規模細胞膜損傷的細胞群之方法學。在本篇研究中,我們改良McNeil 與Warder 在1987年發展的beads loading 技術,利用直徑1毫米的磁珠造成大量細胞的細胞膜受損,進而進行大量分析的實驗。在細胞膜損傷後,我們看到了許多蛋白質在量的增加,其中包含了與內質網壓力(ERstress)相關的chaperones。我們更進一步發現p38 MAPK 的參與,以及其上游分子MEK3/6 與ASK-1 的活化。這些結果顯示,細胞膜破損對於細胞來說是另一種壓力形式,細胞並且透過活化p38 MAPK 的訊息傳遞路徑來促進其存活。利用這
項新的Magnetic beads rolling assay 方法學,我們能夠進一步解析細胞膜受損以及修補,這個常見且重要的生物現象的運作方式。 | zh_TW |
dc.description.abstract | Plasma membrane disruption is a common type of cell injury for cells enduring physiologically generated mechanical forces, such as epithelia and skeletal muscle cells.
Repair of torn cell surface is essential to cell survival and has been proposed to be mediated by calcium-elicited gel barrier formation and exocytosis. However, the exact mechanisms underlying membrane repair remain still obscure for years owing to the lack of methods to induce large-scale mechanical rupture of cell membrane in vitro. Herein we characterize a “magnetic beads rolling” technique modified from the beadloading method (McNeil and Warder 1987) for quantitative analyses. Pilot experiments suggested the involvement of CaMK in this process and protein levels of some interesting targets were markedly changed during resealing process including several ER stress-related molecules. Importantly, we found that p38 MAPK and its upstream MEK3/6 and ASK-1 were transiently activated and inhibition of p38 impaired smembrane repair. We also observed compensatory endocytosis after membrane rupture. These results suggest that membrane disruptions employ similar mechanism as other stress responses through p38 MAPK pathway. Equipped with this newly developed assay, we are in the processes of dissecting the signal transduction pathway involved in membrane rupture and repair. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T16:45:20Z (GMT). No. of bitstreams: 1 ntu-97-R95b46016-1.pdf: 10663190 bytes, checksum: a9832df1610359cf45b3af9204cf7a72 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | iii
Abstract (Chinese)……….…………..…………………………………………………i Abstract……………………………...………………………………………………...ii Contents………..……………………..………………………………………………iii I. Introduction………………………...………………………………………………..1 1. Cell membrane is easily hurt……………….…………………………………...1 2. Resealing is essential and rapid…….…………………………………………...1 3. Resealing requires calcium dependent exocytosis……………………………...2 4. The patch hypothesis……………………………………………………………3 5. The sealing organelles…………………………………………………………..4 6. The proteins involved…………………………………………………………...5 7. Strategies for cell wounding assays……………………………………………..5 II. Materials and methods……….……………………………………………………..7 1. Cell culture……………………………………………………………………...7 2. Cell wounding assay……….……………………………………………………7 3. Gel electrophoresis and western blot analysis………………….……………….8 4. Cloning and purification of the recombinant Annexin a2……….……………...9 5. Preparation of polyclonal anti-Annexin a2 antibodies………………………...10 6. Cell viability…………………………………………………………………...10 7. RT-PCR………………………………………………………………………..11 8. Immunofluorescence…………………………………………………………..11 9. Statistical analysis……………………………………………………………..11 III. Results……………………………………………………………………………12 1. Magnetic beads rolling assay and cell line decision…………………………..12 2. Beads to cell density test………………………………………………………13 3. Characteristics of beads-rolled cells……………………………………………13 4. Calcium signaling in membrane resealing……………………………………...14 5. Up-regulation of stress response proteins………………………………………15 6. p38 MAPK-mediated signals are required for post-wounding survival………..16 7. p38 activation affects related proteins stability………………………………...16 8. Upstream regulation of p38 signaling in A431-III during membrane repair.. …17 9. Protein localization after wounding………………………………………….…18 10. Observation of endocytosis in post-wounding cells……………..…………....19 IV. Figures and tables………………………………………………………………...21 V. Discussion………………………………………………………………………...30 1. Membrane disruption causes stress and activates p38 signaling……………….30 2. Protein stabilization by p38 signaling………….……………………………….30 3. Signaling module of membrane repair.…………………………………………31 4. Misfold protein response………………………………………………………..32 5. Future challenges in magnetic beads rolling……………………………………33 VI. References………………………………………………………………………..34 VII. Supplementary figures and tables……………………………………………….40 | |
dc.language.iso | en | |
dc.title | 上皮細胞細胞膜修補之訊息傳遞研究 | zh_TW |
dc.title | Investigation of signal transduction pathway involved in plasma membrane repair of epithelial cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李明亭(Ming-Ting Lee),黃詮珍,陳宏文(Hung-Wen Chen),張茂山(Mau-Sun Chang) | |
dc.subject.keyword | 細胞膜損傷,細胞膜修補,內質網壓力,p38 MAPK,磁珠, | zh_TW |
dc.subject.keyword | Membrane repair,stress response,p38 MAPK,beads rolling,exocytosis, | en |
dc.relation.page | 45 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-08-01 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科學研究所 | zh_TW |
顯示於系所單位: | 生化科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 10.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。