請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4033
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 金洛仁(Laurent Zimmerli) | |
dc.contributor.author | Tai-I Chen | en |
dc.contributor.author | 陳太一 | zh_TW |
dc.date.accessioned | 2021-05-13T08:40:52Z | - |
dc.date.available | 2021-02-24 | |
dc.date.available | 2021-05-13T08:40:52Z | - |
dc.date.copyright | 2016-02-24 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-01-25 | |
dc.identifier.citation | Asai, T., Tena, G., Plotnikova, J, Willmann, M.R., Chiu, W.L., Gomez-Gomez, L., Boller T, Ausubel, F.M., and Sheen, J. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415: 977-83.
Ausubel, F.M. (2005). Are innate immune signaling pathways in plants and animals conserved? Nat. Immunol. 6: 973–979 Bari, R. and Jones, J.D. (2009). Role of plant hormones in plant defence responses. Plant Mol. Biol. 69: 473-488. Bartels, S., Lori, M., Mbengue, M.,van Verk, M., Klauser, D., Hander, T., Robatzek, S., and Boller, T. (2013). The family of AtPeps and their precursors in Arabidopsis: Differential expression and localization but similar induction of pattern-triggered immune responses. Journal of Experimental Botany In Press. Boller, T., and Felix, G. (2009). A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by patternrecognition receptors. Annu. Rev. Plant Biol. 60: 379–406. Boller, T., and He, S.Y. (2009). Innate immunity in plants: An arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324: 742–744. Bostock, R.M. (2005). Signal crosstalk and induced resistance: Straddling the line between cost and benefit. Annual Review of Phytopathology 43: 545-580. Boudsocq, M. (2012). Characterization of Arabidopsis calcium dependent protein kinases: activated or not by calcium? Biochem. J. 447: 291–299 Boudsocq M., and Sheen J. (2013). CDPKs in immune and stress signaling. Trends Plant Sci. 18: 0-40 Boudsocq, M., Willmann, M.R., McCormack, M., Lee, H., Shan, L., He, P., Bush, J., Cheng, S.H., and Sheen, J. (2010). Differential innate immune signalling via Ca(2+) sensor protein kinases. Nature 464: 418-422. Cheng, S.H., Willmann, M.R., Chen, H.C., and Sheen, J. (2002). Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physio. 129: 449-485 Chen, X.-Y., and Kim, J.-Y. (2014). Callose synthesis in higher plants. Plant Signal Behav. 4: 489-492 Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J.D., Felix, G., and Boller, T. (2007). A flagellin-induced complex of the recep-tor FLS2 and BAK1 initiates plant defence. Nature 448: 497-500. Christodoulou, J., Malmendal, A., Harper, J.F. and Chazin, W.J. (2004) Evidence for differing roles for each lobe of the calmodulin-like domain in a calcium-dependent protein kinase. J. Biol. Chem. 279: 29092–29100 Coca, M. and San Segundo, B. (2010). AtCPK1 calcium-dependent protein kinase mediates pathogen resistance in Arabidopsis. Plant J. 63: 526–540 de Torres Zabala M., Bennett M.H., Truman W.H., and Grant M.R. (2009). Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defence responses. Plant J. 59: 75-86 DeFalco, T.A., Bender, K.W., and Snedden, W.A. (2010) Breaking the code: Ca2+ sensors in plant signalling. Biochem. J. 425: 27–40. Dong, C., Davis, R.J., and Flavell, R. (2002). MAP kinases in the immune response. Annual Review of Immunology 20: 55-72. Downie, J.A. (2014). Calcium signals in plant immunity: a spiky issue. New Phytol. 204: 33-5. Feys, B.J., Moisan, L.J., Newman, M., and Parker, J. (2001). Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. The EMBO J. 20: 5400-5411. Gao, X., Cox, K.L., and He P. (2014). Functions of Calcium-Dependent Protein Kinases in Plant Innate Immunity. Plants 3: 160-176 Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology 43: 205-227. Gomez-Gomez, L. (2001). Both the extracellular leucine-rich repeat domain and the kinase activity of FLS2 are required for flagellin binding and signaling in Arabidopsis. Plant Cell 13: 1155-1163. Greenberg, J.T. and Yao, N. (2004). The role and regulation of programmed cell death in plant-pathogen interactions. Cellular Microbiology 6: 201-211 Huffaker, A., and Ryan, C.A. (2007). Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response. Proc Natl Acad Sci. USA. 104: 10732 – 10736 Jones, J.D.G., and Dangl, J.L. (2006). The plant immune system. Nature 444: 323–329. Kanchiswamy, C.N. (2010). Regulation of Arabidopsis defense responses against Spodoptera littoralis by CPK-mediated calcium signaling. BMC Plant Biol. 10: 97 Kang, G.H., Son, S., Cho, Y.H., and Yoo, S.D. (2015). Regulatory role of BOTRYTIS INDUCED KINASE1 in ETHYLENE INSENSITIVE3-dependent gene expression in Arabidopsis. Plant Cell Rep. Keppler L.D., Baker C.J., and Atkinson M.M. (1989). Active oxygen production during a bacteria-induced hypersensitive reaction in tobacco suspension cells. Phytopathology 79: 974-978 Li, G., Boudsocq, M., Hem, S., Vialaret, J., Rossignol, M., Maurel, C., and Santoni, V. (2015). The calcium-dependent protein kinase CPK7 acts on root hydraulic conductivity. Plant Cell Environ. 38: 312-20. Melotto, M., Underwood, W., Koczan, J., Nomura, K., and He, S.Y. (2006). Plant stomata function in innate immunity against bacterial invasion. Cell 126: 969-980. Misra, B.B., Acharya, B.R., Granot, D., Assmann, S.M., and Chen, S. (2015). The guard cell metabolome: functions in stomatal movement and global food security. Front Plant Sci. 6:334. Monaghan J., Matschi S., Romeis T., and Zipfel C. (2015). The calcium-dependent protein kinase CPK28 negatively regulates the BIK1-mediated PAMP-induced calcium burst. Plant Signal Behav. 10: e1018497. Petersen M., Brodersen P., Naested H., Andreasson E., Lindhart U., Johansen B., Nielsen H.B., Lacy M., Austin M.J., and Parker J.E. (2000). Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111-1120. Pieterse, C.M., Leon-Reyes, A., van Endt, S., and van Wees, S. (2009). Networking by small-molecule hormones in plant immunity. Nature Chem. Bio. 5: 308-316. Pieterse, C.M., D. van der Does, C. Zamioundis, A. Leon-Reyes, and S. van Wees (2012). Hormonal modulation of plant immunity. Annual Rev. of Cell and Developmental Biology 28: 489-521 Romeis T, and Herde M. (2014). From local to global: CDPKs in systemic defense signaling upon microbial and herbivore attack. Curr Opin Plant Biol. 20:1-10. Ross, A., Yamada, K., Hiruma, K., Yamashita-Yamada, M., Lu, X., Takano, Y., Tsuda, K. and Saijo, Y. (2014). The Arabidopsis PEPR pathway couples local and systemic plant immunity. The EMBO J. 33: 62-75 Sanders, D., Pelloux, J., Brownlee, C., Harper, J.F. (2002) Calcium at the crossroads of signaling. Plant Cell 14: S401–S417. Singh P., Kuo Y.C., Mishra S, Tsai C.H., Chien C.C., Chen C.W., Desclos-Theveniau M., Chu P.W., Schulze B, Chinchilla D, Boller T., and Zimmerli L. (2012). The lectin receptor kinase-VI.2 is required for priming and positively regulates Arabidopsis pattern-triggered immunity. Plant Cell 24: 1256-70. Thomma, B.P.H.J, Eggermont, K., Penninckx, I.A.M.A., Mauch-Mani, B., Vogelsang, R., Cammue, B.P.A., and Broekaert, W.F. (1998). Separate jasmonate dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci. 95:15107-15111. Van Verk, M.C., Gatz, C., and Linthorst, H.J.M. (2009). Transcriptional Regulation of Plant Defense Responses. In Advances in Botanical Research, L.C.V. Loon, ed (Academic Press), pp. 397-438. Weljie, A.M. and Vogel, H.J. (2004) Unexpected structure of the Ca2+ -regulatory region from soybean calcium-dependent protein kinase-α. J. Biol. Chem. 279: 35494–35502 Yamaguchi, Y., Huffaker, A., Bryan, A., Tax, F., and Ryan, C. (2010). PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell 22: 508-522. Yan, J.B., Zhang, C., Gu, M., Bai, Z., Zhang, W., Qi, T., Cheng, Z., Peng, W., Lou, H., Nan, F., Wang, Z., and Xie D. (2009). The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21: 2220-2236. Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2: 1565-1572. Zimmerli, L., Metraux, J.P., and Mauch-Mani, B. (2001). beta-Aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiol. 126: 517-523. Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E., Jones, J.D., Felix, G., and Boller, T. (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428: 764-767. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4033 | - |
dc.description.abstract | 在植物面對各式生物性或非生物逆境時、細胞內鈣離子累積為普遍且廣泛的訊息傳遞。在阿拉伯芥有一群包含34成員的鈣離子依賴蛋白磷酸激脢家族,同時具有磷酸激脢以及與鈣離子結合的能力,以此參與鈣離子訊息傳遞。其中鈣離子依賴蛋白磷酸激7與膜受體感受病原相關分子模式激活的免疫反應(PTI)正調控子LecRK VI.2可能有共表現之現象,對於典型PTI機制如MAPK磷酸化以及癒傷葡聚醣(callose)累積負調控。更多證據顯示,鈣離子依賴蛋白磷酸激7亦參與在荷爾蒙相關的、水楊酸防禦反應、茉莉酸-乙烯防禦反應,例如突變株對於活體營養性病原菌具有抗性但對於死體營養病原菌更感病,荷爾蒙標誌基因分析水楊酸途徑相對應的PR1有更高的表現,而茉莉酸-乙烯途徑標誌基因PDF1.2則相對低,顯示了此基因可能會影響兩個重要植物荷爾蒙平衡;另外,PEPR 抗病途徑亦於本基因的突變株當中亦顯示出了更佳之活性。綜合以上所述,在植物抗病反應當中,CPK7負向調控了PTI並且影響PEPR抗病途徑與荷爾蒙相關防禦反應。 | zh_TW |
dc.description.abstract | Calcium ions (Ca2+) play an essential and general role as secondary messengers in many cellular signaling pathways. In Arabidopsis, Ca2+-dependent protein kinases (CPKs), a family of 34 members, are able to sense and to response to changes in calcium concentrations through their calcium binding ability and kinase activity. Among these CPKs, CPK7 was selected as a putative co-expressed gene with LecRK-VI.2, a positive regulator of PAMP-triggered Immunity (PTI). In this work, we show that CPK7 negatively regulates typical PTI responses such as callose deposition and MAPK kinase phosphorylation. Concomitantly, knock-out mutant lines of CPK7 were more resistant to the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). By contrast, cpk7 mutants were more susceptible to the necrotrophic pathogens Pectobacterium carotovorum ssp. carotovorum (Pcc) and Botrytis cinerea. The cpk7 mutants also demonstrated a potentiated accumulation of PR1 mRNA upon Pst DC3000 infection and less PDF1.2 up-regulation after Pcc inoculation, indicating that CPK7 may also affect hormone responses of plant defense. Furthermore, CPK7 also negatively regulates the (full name needed here) PEPR pathway. These results suggest that in response to calcium signaling triggered by PTI, CPK7 modulates hormone homeostasis and PEPR pathway activity, affecting plant defense to biotic stresses. | en |
dc.description.provenance | Made available in DSpace on 2021-05-13T08:40:52Z (GMT). No. of bitstreams: 1 ntu-105-R02b42020-1.pdf: 1457735 bytes, checksum: 3adc9555c5cdf5df6a2fe79f6ab381fe (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 誌謝 i 摘要 ii Abstract iii Abbreviations v Introduction 8 Pattern-Triggered Immunity 8 SA-, JA/ET-dependent defense and PEPR pathway 10 CPKs and CPK7 12 Material and Methods 15 Plant Materials and Growth Conditions 15 Pathogen Infection Assay 15 Oxidative Burst Kinetic Assay 16 Stomatal Assay 17 Callose Staining Assay 17 MAPK Phosphorylation Assay 18 PAMP Treatment 19 RNA Extraction and qRT-PCR 20 Subcellular Localization 21 Bimolecular Fluorescence Complementation Assay in Arabidopsis Protoplast 22 Results 24 Enhanced resistance to hemi-biotrophic bacteria in Arabidopsis cpk7 mutants 24 The cpk7 mutants generate WT-level of reactive oxygen species burst upon flg22 perception 24 CPK7 negatively modulates PTI-mediated callose deposition 25 CPK7 is not critical for stomatal innate immunity 25 Higher MPK3/MPK6 phosphorylation level is observed in cpk7 mutants after flg22 treatment 26 PTI marker genes up-regulation is comparable between WT and cpk7 mutants 27 cpk7 mutants demonstrate a susceptible phenotype to necrotrophic Pcc and B. cinerea infections 27 Expression of PR1 is potentiated in cpk7 mutants 28 cpk7 mutants accumulate less PDF1.2 transcripts upon Pcc infiltration but normal level upon B. cinerea infection 29 CPK7 negatively regulates FRK1 expression upon pep1 treatment but not PROPEP1 expression 30 CPK7 is localized on the plasma membrane and nucleus and localization is affected by flg22 treatment 31 CPK7 does not associate with FLS2, BAK1, BIK1 and PEPR1 31 Discussion 33 CPK7 plays a role in the Arabidopsis PTI as a negative regulator. 33 CPK7 modulates SA-dependent and JA/SA-dependent defense and CPK7 negatively regulates PEPR pathway. 34 CPK7 acts downstream of PTI, modulating several defense pathways 35 Conclusion and future perspectives 37 Figure 38 Figure 1: CPK family in Arabidopsis. 38 Figure 2: The putative structure of CPK7 and cpk7 mutants. 39 Figure 3. Disease symptoms and bacterial titers of Pst DC3000 infected Col-0 and cpk7 mutant lines 41 Figure 4. ROS production after flg22 treatment. 42 Figure 5. Visualizations and quantifications of callose deposits upon flg22 treatment 45 Figure 6: CPK7 in stomatal innate immunity. 46 Figure 7: MAPK kinase Assay 48 Figure 8. Transcriptional expression of PTI-responsive genes FRK1 and NHL10 after flg22 treatment. 49 Figure 9. Disease symptoms and bacterial titers of Pcc infected Col-0 and cpk7 mutant lines 51 Figure 10: Disease symptoms and lesion perimeter of B. cinerea infected Col-0 and cpk7 mutant lines 53 Figure 11: Transcriptional expression of the SA-dependent pathway marker gene PR1 after Pst DC3000 infiltration. 55 Figure 12: Transcriptional expression of the JA/ET-dependent pathway marker gene PDF1.2 after Pcc and B. cinerea infiltration. 57 Figure 13: Transcriptional expression of FRK1 and PROPEP1 upon pep1 treatment. 59 Figure 14: Subcellular localization of CPK7. 60 Figure 15: Association of CPK7 with FLS2, BAK1, BIK1 and PEPR1 could not be observed. 62 Supplemental table S1. Putative Co-expressing Gene of LecRK VI.2 63 Supplemental table S2. List of Primers 63 Supplemental Figure S1: Transcriptional expression of ERF1 upon ACC treatment. 64 References 65 | |
dc.language.iso | en | |
dc.title | 鈣離子依賴磷酸激脢參與在植物先天性免疫反應以及荷爾蒙相關防禦反應之功能性分析 | zh_TW |
dc.title | Functional Characterization of CPK7 in Pattern-Triggered Immunity and Hormone-Related Plant Defense | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳克強(Ke-qiang Wu),張英(Ing-Feng Chang),陳昭瑩(Chao-Ying Chen) | |
dc.subject.keyword | 鈣離子依賴蛋白磷酸激,細菌性斑點病病原菌,細菌性軟腐病病原菌,灰黴病病原菌,PAMP誘發免疫反應,水楊酸防禦反應,茉莉酸-乙烯防禦反應,PEPR抗病途徑, | zh_TW |
dc.subject.keyword | Ca2+-dependent protein kinases,Pseudomonas syringae,Pectobacterium carotovorum ssp. carotovorum,Botrytis cinerea,PAMP-triggered immunity (PTI),SA-dependent pathway,JA/ET-dependent pathway,PEPR pathway, | en |
dc.relation.page | 69 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2016-01-26 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf | 1.42 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。