Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40335
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝宗霖
dc.contributor.authorYu-Hua Pengen
dc.contributor.author彭郁華zh_TW
dc.date.accessioned2021-06-14T16:45:06Z-
dc.date.available2010-08-04
dc.date.copyright2008-08-04
dc.date.issued2008
dc.date.submitted2008-07-31
dc.identifier.citation參考文獻
[1] A. Fujishima and K. Honda (1972). ' Electrochemical photolysis of water at a semiconductor electrode ' Nature 238(5358): 37-38.
[2] S. C. Kim, M. C. Heo, S. H. Hahn, C. W. Lee, J. H. Joo, J. S. Kim, I. K. Yoo and E. J. Kim (2005). 'Optical and photocatalytic properties of Pt-photodeposited sol-gel TiO2 thin films.' Materials Letters 59(16): 2059-2063.
[3] W. Y. Choi, A. Termin and M. R. Hoffmann (1994). ' The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics ' Journal of Physical Chemistry 98(51): 13669-13679.
[4] H. J. F. Jansen and A. J. Freeman (1984). ' Total energy full potential linearized augmented plane wave (FLAPW) method for bulk solids: electronic and structural properties of tungsten ' Physical Review B 30(2): 561-569.
[5] U. Diebold (2003). 'The surface science of titanium dioxide.' Surface Science Reports 48(5-8): 53-229.
[6] H. Yamashita, H. Nishiguchi, N. Kamada, M. Anpo, Y. Teraoka, H. Hatano, S. Ehara, K. Kikui, L. Palmisano, A. Sclafani, M. Schiavello and M. A. Fox (1994).
' Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts.' Research on Chemical Intermediates 20(8): 815-823.
[7] A. Sclafani and J. M. Herrmann (1996). 'Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions.' Journal of Physical Chemistry 100(32): 13655-13661.
[8] D. Dvoranova,V. Brezova, M. Mazur and M. A Malati (2002). 'Investigations of metal-doped titanium dioxide photocatalysts.' Applied Catalysis B-Environmental 37(2): 91-105.
[9]吳怡貞,“利用真空濺鍍製備可見光奈米光觸媒進行丙酮分解”,國立中山大學環境工程研究所碩士論文,民國96年。
[10] L. M. Williams and D. W. Hess (1984). 'Photoelectrochemical properties of plasma deposited TiO2 thin film.' Thin Solid Films 115(1): 13-18.
[11] D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen and E. C. Dickey (2001). 'Titanium oxide nanotube arrays prepared by anodic oxidation.' Journal of Materials Research 16(12): 3331-3334.
[12] J. Zhao, X. Wang, R. Chen and L. Li (2005). 'Fabrication of titanium oxide nanotube arrays by anodic oxidation.' Solid State Communications 134(10): 705-710.
[13] D. D. Macdonald (1993). 'On the formation of voids in anodic oxide-films on aluminum.' Journal of the Electrochemical Society 140(3): L27-L30.
[14] K. S. Raja, M. Misra and K. Paramguru (2005). 'Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium.' Electrochimica Acta 51(1): 154-165.
[15]陳君怡、呂世源,“鈦的陽極處理與應用”,中國化學協會,65,3,p225-236,2007.
[16] R. Beranek, H. Hildebrand and P. Schmuki (2003). 'Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes.' Electrochemical and Solid State Letters 6(3): B12-B14.
[17] S. Bauer, S. Kleber and P. Schmuki (2006). 'TiO2 nanotubes: Tailoring the geometry in H3PO4/HF electrolytes.' Electrochemistry Communications 8(8): 1321-1325.
[18] Q. Y. Cai, M. Paulose, O. K. Varghese and C. A. Grimes (2005). 'The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation.' Journal of Materials Research 20(1): 230-236.
[19] J. M. Macak, H. Tsuchiya and P. Schmuki (2005). 'High-aspect-ratio TiO2 nanotubes by anodization of titanium.' Angewandte Chemie-International Edition 44(14): 2100-2102.
[20] C. M. Ruan, M. Paulose, O. K. Varghese, G. K. Mor and C. A. Grimes (2005). 'Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte.' Journal of Physical Chemistry B 109(33): 15754-15759.
[21] X. Quan, S. G. Yang, X. L. Ruan and H. M. Zhao (2005). 'Preparation of titania nanotubes and their environmental applications as electrode.' Environmental Science & Technology 39(10): 3770-3775.
[22] J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova and P. Schmuki (2005). 'Smooth anodic TiO2 nanotubes.' Angewandte Chemie-International Edition 44(45): 7463-7465.
[23] G. K. Mor, O. K. Varghese, M. Paulose, N. Mukherjee and C. A. Grimes (2003). 'Fabrication of tapered, conical-shaped titania nanotubes.' Journal of Materials Research 18(11): 2588-2593.
[24] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes (2005). 'Enhanced photocleavage of water using titania nanotube arrays.' Nano Letters 5(1): 191-195.
[25] A. K. Sharma (1992). 'Anodizing titanium for space applications.' Thin Solid Films 208(1): 48-54.
[26] T. H. Lim, S. M. Jeong, S. D. Kim and J. Gyenis (2000). 'Photocatalytic decomposition of NO by TiO2 particles.' Journal of Photochemistry and Photobiology a-Chemistry 134(3): 209-217.
[27] H. Yamashita, Y. Fujii, Y. Ichihashi, S. G. Zhang, K. Ikeue, D. R. Park, K. Koyano, T. Tatsumi and M. Anpo (1998). 'Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. ' Catalysis Today 45(1-4): 221-227.
[28] C. F. Lao, Y. T. Chuai, L. Su, X. Liu, L. Huang, H. M. Cheng and D. C. Zou (2005). 'Mix-solvent-thermal method for the synthesis of anatase nanocrystalline titanium dioxide used in dye-sensitized solar cell.' Solar Energy Materials and Solar Cells 85(3): 457-465.
[29] C. A. Grimes, O. K. Varghese and S. Ranjan (2008). Light, Water, Hydrogen
The Solar Generation of Hydrogen by Water Photoelectrolysis Springer Science+ Business Media, New York.
[30] J. G. Mavroides, J. A. Kafalas and D. F. Kolesar (1976). 'Photoelectrolysis of water in cells with SrTiO3 anodes.' Applied Physics Letters 28(5): 241-243.
[31] S. U. M. Khan, M. Al-Shahry and W. B. Ingler (2002). 'Efficient photochemical water splitting by a chemically modified n-TiO2.' Science 297(5590): 2243-2245.
[32] O. Khaselev and J. A. Turner (1998). 'A monolithic photovoltaic- photoelectrochemical device for hydrogen production via water splitting.' Science 280(5362): 425-427.
[33] A. Hattori, Y. Tokihisa, H. Tada and S. Ito (2000). 'Acceleration of oxidations and retardation of reductions in photocatalysis of a TiO2/SnO2 bilayer-type catalyst.' Journal of the Electrochemical Society 147(6): 2279-2283.
[34] K. E. Karakitsou and X. E. Verykios (1993). 'Effects of altervalent cation doping of TiO2 on its performance as a photocatalyst for water cleavage.' Journal of Physical Chemistry 97(6): 1184-1189.
[35] Z. Ding, G. Q. Lu and P. F. Greenfield (2000). 'Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water.' Journal of Physical Chemistry B 104(19): 4815-4820.
[36] J. H. Park, S. Kim and A. J. Bard (2006). 'Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting.' Nano Letters 6(1): 24-28.
[37] S. Sakthivel, M. V. Shankar, M. Palanichamy, B. Arabindoo, D. W. Bahnemann and V. Murugesan (2004). 'Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst.' Water Research 38(13): 3001-3008.
[38] K. Wilke and H. D. Breuer (1999). 'The influence of transition metal doping on the physical and photocatalytic properties of titania.' Journal of Photochemistry and Photobiology a-Chemistry 121(1): 49-53.
[39] T. Bak, J. Nowotny, M. Rekas and C. C. Sorrell (2002). 'Photo-electrochemical properties of the TiO2-Pt system in aqueous solutions.' International Journal of Hydrogen Energy 27(1): 19-26.
[40] N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti and H. Hidaka (1995). ' Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol chemical evidence for electron and hole transfer between coupled semiconductors.' Journal of Photochemistry and Photobiology a-Chemistry 85(3): 247-255.
[41] R. Nakamura, T. Tanaka and Y. Nakato (2004). 'Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes.' Journal of Physical Chemistry B 108(30): 10617-10620.
[42] J. M. Macak, K. Sirotna and P. Schmuki (2005). 'Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes.' Electrochimica Acta 50(18): 3679-3684.
[43] O. K. Varghese, D. W. Gong, M. Paulose, C. A. Grimes and E. C. Dickey (2003). 'Crystallization and high-temperature structural stability of titanium oxide nanotube arrays.' Journal of Materials Research 18(1): 156-165.
[44] T. Hurlen (1959). 'On the defect structure of rutile.' Acta Chemica Scandinavica 13(2): 365-376.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40335-
dc.description.abstract二氧化鈦(TiO2)具有良好的化學穩定性及光催化活性,因此常使用於光觸媒領域,但由於本身為高能隙的半導體材料並且只能吸收紫外光波段的能量,使得應用性受到侷限。本研究利用陽極氧化法(anodization)製備具高比表面積的TiO2奈米管結構,探討比表面積的不同對TiO2奈米管的光反應性與光電解水的表現,並且採用還原氣氛熱處理(reduced atmosphere heat treatment)增加TiO2奈米管中的缺陷,以期可提升TiO2光分解水製氫的能力及降低其能隙進而可吸收可見光。
鈦的陽極氧化處理使用三種不同電解液:0.5wt%氫氟酸(HF)、1M磷酸(H3PO4)+0.3wt%氫氟酸及1M硫酸鈉(Na2SO4)+0.5wt%氟化鈉(NaF)。實驗結果顯示,於室溫下,操作電壓皆為20伏特,分別進行不同時間的陽極處理,則使用中性緩衝溶液1MNa2SO4+0.5wt%NaF所製得的TiO2奈米管具有最高的比表面積,且奈米管長度最長可達3微米(μm)。於三種電解液中陽極處理完畢的非晶質TiO2奈米管在空氣(Air)下進行400℃熱處理並持溫2小時,由XRD可知當TiO2奈米管的長度愈長,銳鈦礦(anatase)的特徵峰強度愈強;由UV/Vis光譜分析與光電化學分析的結果可知TiO2奈米管的長度愈長,則對紫外光的反應更明顯;在氫氣收集的結果顯示,TiO2奈米管的長度愈長,則TiO2奈米管的光電解水製氫的表現愈佳,因此TiO2奈米管的長度愈長,即比表面積愈高,則對光的反應性愈顯著。
在氣氛熱處理方面選用兩種成分的還原氣氛:99%N2+1%H2(O2:12ppm)與97%N2+3%H2(O2:0.6ppm),由實驗結果發現,在99%N2+1%H2下進行400℃至800℃的退火,TiO2的能隙值下降,最低降至3.01eV,但其能隙還不足以在可見光下進行反應,推測造成此能隙的下降是因為發生相轉變,由銳鈦礦相(anatase,3.2eV)變成金紅石相(rutile,3.0eV);在97%N2+3%H2下進行400℃至700℃退火,TiO2奈米管的能隙值增加,能隙值的增加可能是因為97%N2+3%H2造成TiO2變為TiO2-x而導致結晶度下降。在800℃時,rutile相的生成則主導能隙值下降,因此會使臨界吸收波長往長波長處移動。
實驗結果發現,同樣在400℃退火且持溫2hr,在空氣中熱處理比起還原氣氛99%N2 + 1%H2及97%N2+3%H2對TiO2奈米管在光電流密度與光電解水製氫的表現較佳,即在同一溫度400℃時,氣氛的含氧量降低會使光分解水製氫的能力變差。
zh_TW
dc.description.abstractTitanium oxide (TiO2) exhibits outstanding resistance to corrosion and photocorrosion in aqueous environments. Due to its high photosensitivity, TiO2 is often used in the applications of photocatalysis. The wide band gap of TiO2 causes it to absorb only UV radiation, and consequently, limits its photocatalytic applications. In this study, the photosensitivities of anodized TiO2 nanotubes of different aspect ratios and prepared under different annealing conditions are investigated. The performances of photoelectrolysis of various nanotube TiO2 systems are also examined.
The experimental results indicate that a high aspect ratio for the TiO2 nanotubes can be achieved by adopting the buffer electrolyte 1MNa2SO4+0.5wt%NaF during the anodization procedure. Characterizations using X-Ray Diffractometer Spectrometer (XRD), UV-Vis-NIR Spectrometer (UV/Vis), electrochemical analysis and hydrogen production by water-splitting support the high photosensitivity of high-aspect-ratio TiO2 nanotubes.
In this study, three different atmospheres: Air, 99%N2+1%H2 (O2:12ppm) and 97%N2+3%H2 (O2:0.6ppm) are chosen for the annealing procedure. The results indicate that the band gap of the TiO2 nanotubes decreases to a minimum value about 3.01eV by annealing in between 400°C to 800°C in 99%N2+1%H2(O2:12ppm) for 2 h. This is due to the formation of rutile phase at high temperatures. However, this band gap value is still not low enough to absorb visible light radiation. In contrast, when annealing in between 400°C to 800°C in 97%N2+3%H2(O2:0.6ppm) for 2 h, the band gap first increases modestly and than decreases sharply at 800°C. The strong reduction power of annealing atmosphere proceduces crystallgraphic defects (e.g., TiO2→TiO2-x) which increase the band gap value of the TiO2 nanotubes. However at 800°C, the formation of rutile phase becomes the dominate factor, and consequently, lowers the band gap. It is found that the stronger the reduction power of the annealing atmosphere, the poorer the water splitting ability of the TiO2 nanotubes.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:45:06Z (GMT). No. of bitstreams: 1
ntu-97-R95527005-1.pdf: 3496754 bytes, checksum: 943321ae53679d6cd5f6062cbff8c25a (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents目錄
摘要 I
Abstract III
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
1-1前言 1
1-2研究動機 1
1-3研究目的 2
第二章 文獻回顧 3
2-1奈米材料之基本性質 3
2-2二氧化鈦簡介 4
2-3二氧化鈦薄膜製備方法 6
2-4鈦金屬陽極氧化 8
2-4-1陽極氧化簡介 8
2-4-2陽極氧化鈦之反應機制 8
2-4-3鈦陽極處理之電解液種類 12
2-4-4影響奈米氧化鈦微結構之反應參數 13
2-5二氧化鈦光觸媒 15
2-5-1二氧化鈦光觸媒之應用 15
2-5-2光電化學電池 16
2-5-3分解水機制 17
2-5-4二氧化鈦的能帶結構 18
2-5-5光電化學裝置種類 19
2-5-6半導體與電解液界面之能帶彎曲 20
2-5-7影響二氧化鈦光催化之因素 21
2-6可見光光觸媒之製備 24
第三章 實驗方法與步驟 27
3-1實驗原料 27
3-2實驗步驟與儀器設備 28
3-2-1陽極氧化處理 28
3-2-2氣氛熱處理 29
3-2-3電化學分析 29
3-2-4氫氣收集 30
第四章 結果與討論 35
4-1電解液對二氧化鈦奈米管之特性探討 35
4-1-1微結構分析 35
4-1-2 X-ray繞射分析 46
4-1-3 UV/Vis光譜分析 52
4-1-4光電化學分析 58
4-1-5氫氣收集 62
4-2還原氣氛熱處理對二氧化鈦奈米管之特性探討 68
4-2-1 X-ray繞射分析 68
4-2-2 UV/Vis光譜分析 72
4-2-3光電化學分析 75
4-2-4氫氣收集 78
4-2-5氣氛比較 80
第五章 結論 84
5-1總結 84
5-2未來研究方向 86
參考文獻 87
dc.language.isozh-TW
dc.title二氧化鈦奈米管氫能源製備系統之設計zh_TW
dc.titleStudy of Titanium Oxide (TiO2) Nanotubes for Hydrogen Generationen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林招松,顏家鈺,陳俊杉
dc.subject.keyword陽極氧化;二氧化鈦;奈米管;氫氣;光電解,zh_TW
dc.subject.keywordAnodization,Titanium Oxide,Nanotubes,Hydrogen,Photoelectrolysis,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2008-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
3.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved