請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4031完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏國彥 | |
| dc.contributor.author | Meng-Ting Chiang | en |
| dc.contributor.author | 蔣孟庭 | zh_TW |
| dc.date.accessioned | 2021-05-13T08:40:49Z | - |
| dc.date.available | 2019-02-16 | |
| dc.date.available | 2021-05-13T08:40:49Z | - |
| dc.date.copyright | 2016-02-16 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-01-26 | |
| dc.identifier.citation | Reference
Akimoto, K, Tanaka, T., Hattori, M., Hotta, H. (1994). 'Recent benthic foraminiferal assemblages from the cold seep communities – a contribution to the methane gas indicator', Pacific Neogene Events in Time and Space, Tsuchi, R. (ED.), University of Tokyo Press, Tokyo, 11-25. Akimoto, K., Saji, T., Tsutsui, R., & Yoshihara, E. (1996a). Living and fossil benthic foraminiferal assemblages co-occurred with the Calyptogena communities (I)–Depth distribution of benthic foraminifera in the sediments of the off Hatsushima living Calyptogena community. Fossils, 60, 41-47. Akimoto, K., Saga, S., & Yarnada, K (1996b). 'Living and fossil benthic foraminiferal assemblages co-occurred with the Calyptogena communities (II)–Benthic foraminiferal assemblages with the Late Cenozoic cold seepage. Fossils, 61, 40-46. Altenbach, A. (1992). Short term processes and patterns in the foraminiferal response to organic flux rates. Marine Micropaleontology, 19(1), 119-129. Bagarinao, T. (1992). Sulfide as an environmental factor and toxicant: tolerance and adaptations in aquatic organisms. Aquatic Toxicology, 24(1), 21-62. Barnes, R., & Goldberg, E. (1976). Methane production and consumption in anoxic marine sediments. Geology, 4(5), 297-300. Bernhard, J. M. (1988). Postmortem vital staining in benthic foraminifera; duration and importance in population and distributional studies. The Journal of Foraminiferal Research, 18(2), 143-146. Bernhard, J. M., Buck, K. R., & Barry, J. P. (2001). Monterey Bay cold-seep biota: Assemblages, abundance, and ultrastructure of living foraminifera. Deep Sea Research Part I: Oceanographic Research Papers, 48(10), 2233-2249. Bernhard, J. M., Sen Gupta, B. K., & Baguley, J. G. (2008). Benthic foraminifera living in Gulf of Mexico bathyal and abyssal sediments: Community analysis and comparison to metazoan meiofaunal biomass and density. Deep Sea Research Part II: Topical Studies in Oceanography, 55(24), 2617-2626. Bernhard, J. M., Ostermann, D. R., Williams, D. S., & Blanks, J. K. (2006). Comparison of two methods to identify live benthic foraminifera: A test between Rose Bengal and CellTracker Green with implications for stable isotope paleoreconstructions. Paleoceanography, 21(4). Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann1, A., J?rgensen1, B., Witte1, U. & Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804), 623-626. Boetius, A., & Wenzhöfer, F. (2013). Seafloor oxygen consumption fuelled by methane from cold seeps. Nature Geoscience, 6(9), 725-734. Borcard, D., Gillet, F., & Legendre, P. (2011). Numerical ecology with R: Springer Science & Business Media. 1-315. Carney, R. S. (1994). Consideration of the oasis analogy for chemosynthetic communities at Gulf of Mexico hydrocarbon vents. Geo-Marine Letters, 14(2-3), 149-159. Chao, A., Gotelli, N. J., Hsieh, T., Sander, E. L., Ma, K., Colwell, R. K., & Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45-67. Chao, C. S. (2015) Population and reproductive biology of the deep-sea mussel methane seeps offshore southwestern Taiwan. Department of Oceanography, National Sun Yen-Sen University. Master thesis. 1-65. Chen, C. A. (2002). Shelf-vs. dissolution-generated alkalinity above the chemical lysocline. Deep Sea Research Part II: Topical Studies in Oceanography, 49(24), 5365-5375. Cheng, C., Yang, H. P., Huang, C. Y, Yen, W. (2008) Characteristics of methane seep and the structure of chemautosynthesis-based communities (in Chinese). Journal of tropical oceangraphy, 26(6), 73-82. Chien, C. W. (2014). Studyof authigenic carbonates and asscoiated foraminifera; assemblages in the Pliocene paleoseeps of Chiahsien area in Western Foothills, southweatern Taiwan. Depart. Of Earth Scoences, National Cheng Kung University. Ph.D thesis. 1-211. Chou, W., Sheu, D., Lee, B., Tseng, C., Chen, C., Wang, S., & Wong, G. (2007). Depth distributions of alkalinity, TCO 2 and δ13CTCO2 at SEATS time-series site in the northern South China Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 54(14), 1469-1485. Chung, P. C., Yang, T., Hong, W. L., Lin, S., Sun, C. H., Lin, A. S., Chen, J. C., Wang, Y & Chung, S. H. (2010). Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation. Geofluids, 10(4), 497-510. Cline, J. D. (1969). Spectrophotometric determination of hydrogen sulfide in natural waters. Limnology and Oceanography, 14(3), 454-458. Corliss, B. H., & Emerson, S. (1990). Distribution of Rose Bengal stained deep-sea benthic foraminifera from the Nova Scotian continental margin and Gulf of Maine. Deep Sea Research Part A. Oceanographic Research Papers, 37(3), 381-400. Dauwe, B., Middelburg, J. J., Herman, P. M., & Heip, C. H. (1999). Linking diagenetic alteration of amino acids and bulk organic matter reactivity. Limnology and Oceanography, 44(7), 1809-1814. De Cáceres, M. D., & Legendre, P. (2009). Associations between species and groups of sites: indices and statistical inference. Ecology, 90(12), 3566-3574. De Cáceres, M., Legendre, P., & Moretti, M. (2010). Improving indicator species analysis by combining groups of sites. Oikos, 119(10), 1674-1684. De Cáceres, M., Legendre, P., Wiser, S. K., & Brotons, L. (2012). Using species combinations in indicator value analyses. Methods in Ecology and Evolution, 3(6), 973-982. DeLaca, T. E. (1986). Determination of benthic rhizopod biomass using ATP analysis. The Journal of Foraminiferal Research, 16(4), 285-292. Dubilier, N., Bergin, C., & Lott, C. (2008). Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nature Reviews Microbiology, 6(10), 725-740. Duperron, S., Sibuet, M., MacGregor, B. J., Kuypers, M. M., Fisher, C. R., & Dubilier, N. (2007). Diversity, relative abundance and metabolic potential of bacterial endosymbionts in three Bathymodiolus mussel species from cold seeps in the Gulf of Mexico. Environmental Microbiology, 9(6), 1423-1438. Feely, R., Sabine, C., Lee, K., Millero, F., Lamb, M., Greeley, D., Bullister, J., Key, R., Peng, T.H., Kozyr, A., Ono, T., & Wong, C. (2002). In situ calcium carbonate dissolution in the Pacific Ocean. Global Biogeochemical Cycles, 16(4), 91-91-91-12. Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., & Millero, F. J. (2004). Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science, 305(5682), 362-366. Gooday, A. J., Bernhard, J. M., Levin, L. A., & Suhr, S. B. (2000). Foraminifera in the Arabian Sea oxygen minimum zone and other oxygen-deficient settings: taxonomic composition, diversity, and relation to metazoan faunas. Deep Sea Research Part II: Topical Studies in Oceanography, 47(1), 25-54. Gooday, A. J. (2003). Benthic foraminifera (Protista) as tools in deep-water palaeoceanography: environmental influences on faunal characteristics. Advances in marine biology, 46, 1-90. Gooday, A. J., & Jorissen, F. J. (2012). Benthic foraminiferal biogeography: controls on global distribution patterns in deep-water settings. Annual review of marine science, 4, 237-262. Guo, R. L. (2015) A preliminary study on the contribution of the methane-derived carbon to the carbon pools in near-surface sediment and bottom water: an example from the cold seep region of the Four-Way Closure Ridge, offshore southwestern Taiwan. Department of Oceanography, National Sun Yen-Sen University. Master thesis. 1-61. Hannah, F., & Rogerson, A. (1997). The temporal and spatial distribution of foraminiferans in marine benthic sediments of the Clyde Sea area, Scotland. Estuarine, Coastal and Shelf Science, 44(3), 377-383. Hedley, R. (1963). Cement and iron in the arenaceous foraminifera. Micropaleontology, 433-441. Hedley, R. (1964). The biology of foraminifera. International review of general and experimental zoology, 1, 1-45. Heinz, P., Sommer, S., Pfannkuche, O., & Hemleben, C. (2005). Living benthic foraminifera in sediments influenced by gas hydrates at the Cascadia convergent margin, NE Pacific. Marine Ecology Progress Series, 304, 77-89. Hill, T., Kennett, J., & Spero, H. (2003). Foraminifera as indicators of methane-rich environments: a study of modern methane seeps in Santa Barbara Channel, California. Marine Micropaleontology, 49(1), 123-138. Hsieh, Y. R. (2005) The distribution of modern benthic foraminifera in the northeast and southwest South China Sea. Department of Oceanography, National Sun Yen-Sen University. Master thesis, 1-106. Hung, C. W. (2015) Estimation of methane flux with modified sampling methods from offshore southwestern Taiwan. Department of Oceanography, National Sun Yen-Sen University. Master thesis. 1-76. Jorissen, F. J., de Stigter, H. C., & Widmark, J. G. (1995). A conceptual model explaining benthic foraminiferal microhabitats. Marine Micropaleontology, 26(1), 3-15. Jost, L. (2010). The relation between evenness and diversity. Diversity, 2(2), 207-232. Killops, S. D., & Killops, V. J. (2013). Introduction to organic geochemistry: John Wiley & Sons. 1-265. Liu, C.-S., Schnürle, P., Wang, Y.-S., Chung, S.-H., Chen, S.-C., & Hsiuan, T.-H. (2006). Distribution and characters of gas hydrate offshore of southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 17(4), 615-644. Loeblich Jr, A. R., & Tappan, H. (1988). Foraminiferal genera and their classification: Springer, 1-868. Lutze, G., & Altenbach, A. (1991). Technik und signifikanz der lebendfärbung benthischer foraminiferen mit bengalrot. Geologisches Jahrbuch A, 128, 251-265. Martin, R. A., Nesbitt, E. A., & Campbell, K. A. (2007). Carbon stable isotopic composition of benthic foraminifera from Pliocene cold methane seeps, Cascadia accretionary margin. Palaeogeography, Palaeoclimatology, Palaeoecology, 246(2), 260-277. Martin, R. A., Nesbitt, E. A., & Campbell, K. A. (2010). The effects of anaerobic methane oxidation on benthic foraminiferal assemblages and stable isotopes on the Hikurangi Margin of eastern New Zealand. Marine Geology, 272(1), 270-284. McCorkle, D. C., Keigwin, L. D., Corliss, B. H., & Emerson, S. R. (1990). The influence of microhabitats on the carbon isotopic composition of deep‐sea benthic foraminifera. Paleoceanography, 5(2), 161-185. Miao, Q., & Thunell, R. C. (1993). Recent deep-sea benthic foraminiferal distributions in the South China and Sulu Seas. Marine Micropaleontology, 22(1), 1-32. Milliman, J., Troy, P., Balch, W., Adams, A., Li, Y.-H., & Mackenzie, F. (1999). Biologically mediated dissolution of calcium carbonate above the chemical lysocline? Deep Sea Research Part I: Oceanographic Research Papers, 46(10), 1653-1669. Moodley, L., Schaub, B., Van der Zwaan, G., & Herman, P. (1998). Tolerance of benthic foraminifera (Protista: Sarcodina) to hydrogen sulphide. Marine Ecology Progress Series, 169. Murray, J. W. (1973). Distribution and ecology of living benthic foraminiferids: Heinemann Educational. 1-274. Murray, J. W. (2001). The niche of benthic foraminifera, critical thresholds and proxies. Marine Micropaleontology, 41(1), 1-7. Nix, E., Fisher, C., Vodenichar, J., & Scott, K. (1995). Physiological ecology of a mussel with methanotrophic endosymbionts at three hydrocarbon seep sites in the Gulf of Mexico. Marine Biology, 122(4), 605-617. Panieri, G., Aharon, P., Gupta, B. K. S., Camerlenghi, A., Ferrer, F. P., & Cacho, I. (2014). Late Holocene foraminifera of Blake Ridge diapir: Assemblage variation and stable-isotope record in gas-hydrate bearing sediments. Marine Geology, 353, 99-107. Panieri, G., & Sen Gupta, B. K. (2008). Benthic foraminifera of the Blake Ridge hydrate mound, western North Atlantic Ocean. Marine Micropaleontology, 66(2), 91-102. Pielou, E. C. (1966). The measurement of diversity in different types of biological collections. Journal of theoretical biology, 13, 131-144. Pierrot, D. E. Lewis, &D. W. R. Wallace. (2006) MS Excel Program Developed for CO2 System Calculations. ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee. Rathburn, A. E., Pérez, M. E., Martin, J. B., Day, S. A., Mahn, C., Gieskes, J., Ziebis, W., Williams, D., Bahls, A. (2003). Relationships between the distribution and stable isotopic composition of living benthic foraminifera and cold methane seep biogeochemistry in Monterey Bay, California. Geochemistry, Geophysics, Geosystems, 4(12). Robinson, C. A., Bernhard, J. M., Levin, L. A., Mendoza, G. F., & Blanks, J. K. (2004). Surficial hydrocarbon seep infauna from the Blake Ridge (Atlantic Ocean, 2150 m) and the Gulf of Mexico (690–2240 m). Marine Ecology, 25(4), 313-336. Sen Gupta, B. K., & Aharon, P. (1994). Benthic foraminifera of bathyal hydrocarbon vents of the Gulf of Mexico: Initial report on communities and stable isotopes. Geo-Marine Letters, 14(2-3), 88-96. Schönfeld, J., Alve, E., Geslin, E., Jorissen, F., Korsun, S., & Spezzaferri, S. (2012). The FOBIMO (FOraminiferal BIo-MOnitoring) initiative—Towards a standardised protocol for soft-bottom benthic foraminiferal monitoring studies. Marine Micropaleontology, 94, 1-13. Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication: University of Illinois press. Sibuet, M., & Olu, K. (1998). Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep Sea Research Part II: Topical Studies in Oceanography, 45(1), 517-567. Simpson, E. H. (1949). Measurement of diversity. Nature, 163, 688. Smith, E. B., Scott, K. M., Nix, E. R., Korte, C., & Fisher, C. R. (2000). Growth and condition of seep mussels (Bathymodiolus childressi) at a Gulf of Mexico brine pool. Ecology, 81(9), 2392-2403. Turekian, K. K., Cochran, J. K., Kharkar, D., Cerrato, R. M., Vaisnys, J. R., Sanders, H. L., & Allen, J. A. (1975). Slow growth rate of a deep-sea clam determined by 228Ra chronology. Proceedings of the National Academy of Sciences, 72(7), 2829-2832. Uchio, T. (1962). Influence of the River Shinano on foraminifera and sediment grain size distributions. Publications of the Seto Marine Biological Laboratory, 10(2), 363-392. Walton, W. R. (1952). Techniques for recognition of living foraminifera. Contribution Cushman Foundation of Foraminiferal Research, 3:56-60. Wang, P. S., Chang, C. C., Chao, C. H., Min, C. B., Pien, U. H., Chung, L. F. & Cheng, S. R. (1988) Foraminifera and Ostracods in bottom sediments of the East Chain Sea (in Chinese) : Ocean Press. 1-438. Wu, N.C, & Wang, P.S. (1988) The controlling factor of the distribution of agglutinated benthic foraminifera along the coast of China (in Chinese) Letters of Science, 12, 924-927. Zheng, S. Y., & Fu, Z. S. (2001). Fauna Sinica, Phylum Granuloreticulosa, Class Foraminiferea, Agglutinated Foraminifera: Science Press. 1-788. Reference for R R project R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. R packages De Caceres, M., Legendre, P. (2009). Associations between species and groups of sites: indices and statistical inference. Ecology, URL http://sites.google.com/site/miqueldecaceres/ Hsieh T. C., Ma K. H. and Chao Anne. 2014. iNEXT: iNterpolation and EXTrapolation for species diversity. R package version 2.0, URL: http://chao.stat.nthu.edu.tw/blog/software-download Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K.(2015). cluster: Cluster Analysis Basics and Extensions. R package version 2.0.3. Oksanen, J., Guillaume Blanchet, F., Kindt, R., Legendre P., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Henry, M., Stevens, H., and Wagner, H. (2015). vegan: Community Ecology Package. R package version 2.3-2. https://CRAN.R-project.org/package=vegan | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4031 | - |
| dc.description.abstract | 摘要
底棲性有孔蟲是深海沈積物碳循環中最重要的真核生物之一,然而,其在冷泉生態系中的地位仍在初期研究階段。本研究以數種多變量統計方法探討臺灣西南海域四方圈合海脊冷泉區的底棲性有孔蟲群集結構,以及造成物種組成差異的主要環境因子,並以具備即時影像系統的採樣器在冷泉、過渡區,以及背景環境各採了一根岩芯為研究材料。在表層 1 公分的沈積物中,體型 >250 um 的群集有超過 50% 的膠結質殼體底棲性有孔蟲,可能是因上覆水以及孔隙水中碳酸鹽飽和度偏低所致。冷泉底棲有孔蟲群集的生物多樣性指標在三者中數值最低,過渡區群集與背景群集的數值則十分相近。然而,群集分析顯示過渡區群集與冷泉群群集組成上較相似。指標物種分析結果指出,冷泉的優勢指標物種是膠結質有孔蟲 Haplophramoides bradyi niigataensis,而鈣質有孔蟲 Bulimina aculeata 和 Cassidulinoides differens 則是泛冷泉環境的優勢指標物種。典型相關分析結果顯示,影響底棲性有孔蟲物種組成差異的主要環境因素是孔隙水中的硫酸鹽與溶氧濃度。更多冷泉底棲性有孔蟲生態資訊有賴後續定量研究分析。 | zh_TW |
| dc.description.abstract | Abstract
Benthic foraminifera are the most abundant eukaryotes and play an important role in the cycling of organic matter in deep sea environments. However, their ecology in cold seep environments, one of the most unusual seafloor habitats, is just beginning to be revealed. This study employed multiple multivariate statistical approaches to investigate the benthic foraminiferal community composition and the controlling environmental factors in the cold seep region on the Four Way Closure Ridge, offshore SW Taiwan. Sediment cores were retrieved from three sites (seep, transition, and reference) using video-guided sampling equipment. Faunal analysis based on the size class >250 um showed that the three sites shared the same feature of having abundant agglutinated benthic foraminifera (>50%) in the topmost sediment, probably as a result of the low carbonate saturation state in the overlying and pore waters. The cold seep communities had the lowest biodiversity, but cluster analysis indicated substantial similarity in community composition shared between the seep and transition sites. Indicator species analysis suggested Haplophramoides bradyi niigataensis, an agglutinated species, to be the dominant indicator of the seepage hotspot, whereas Bulimina aculeata and Cassidulinoides differens were the dominant indicator species in the broadly defined cold seep region. Canonical correspondence analysis showed that the concentration of sulfate and dissolved oxygen in the pore water were the most significant biogeochemical factors explaining the community variance. The patterns delineated objectively and quantitatively by these numerical ecology tools offered a basic understanding of the benthic foraminiferal ecology in modern cold seeps developed on accretionary wedges. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T08:40:49Z (GMT). No. of bitstreams: 1 ntu-105-R02224104-1.pdf: 3518955 bytes, checksum: 921526e47dc16ae5d13ee36d9eeea962 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Contents
致謝 i 摘要 ii Abstract iii Contents v Figure Contents vii Table Contents viii 1. Introduction 1 2. Material and Methods 6 2.1 Sampling procedure and classification of benthic foraminifera 6 2.2 Biogeochemical analysis 8 2.3 Statistical analysis 9 3. Results 14 3.1 Environmental factors 14 3.2 Faunal composition 15 3.3 Biodiversity indices and difference among size classes 16 3.4 Degree of dissimilarity among samples 17 3.5 Indicator species and species combinations 18 3.6 Correlation with environmental Factors 21 4. Discussion 24 4.1 Constraints, limitations, and assumptions 25 4.2 Benthic foraminiferal community composition and indicator species 29 4.3 Associations between faunal composition and environmental factors 34 5. Conclusions 41 Reference 59 Appendix 69 | |
| dc.language.iso | en | |
| dc.subject | 典型相關分析 | zh_TW |
| dc.subject | 底棲性有孔蟲 | zh_TW |
| dc.subject | 物種組成 | zh_TW |
| dc.subject | 冷泉 | zh_TW |
| dc.subject | 四方圈合海脊 | zh_TW |
| dc.subject | 指標物種分析 | zh_TW |
| dc.subject | canonical correspondence analysis. | en |
| dc.subject | Four Way Closure Ridge | en |
| dc.subject | species composition | en |
| dc.subject | benthic foraminifera | en |
| dc.subject | cold seeps | en |
| dc.subject | indicator species analysis | en |
| dc.title | 底棲性有孔蟲群集組成與冷泉生地化環境之關連 - 以臺灣西南海域四方圈合海脊為例 | zh_TW |
| dc.title | The benthic foraminifera communities in relation to cold seep biogeochemistry – an example from the Four Way Closure Ridge, offshore southwestern Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林玉詩 | |
| dc.contributor.oralexamcommittee | 王佩玲,謝志豪,林慧玲 | |
| dc.subject.keyword | 底棲性有孔蟲,物種組成,冷泉,四方圈合海脊,指標物種分析,典型相關分析, | zh_TW |
| dc.subject.keyword | benthic foraminifera,species composition,cold seeps,Four Way Closure Ridge,indicator species analysis,canonical correspondence analysis., | en |
| dc.relation.page | 111 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2016-01-27 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf | 3.44 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
