請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40306
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 沈偉強 | |
dc.contributor.author | Yu-Ling Yeh | en |
dc.contributor.author | 葉又綾 | zh_TW |
dc.date.accessioned | 2021-06-14T16:44:28Z | - |
dc.date.available | 2010-08-08 | |
dc.date.copyright | 2008-08-08 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-30 | |
dc.identifier.citation | Alspaugh, J.A., Perfect, J.R., and Heitman, J. (1997) Cryptococcus neoformans mating and virulence are regulated by the G-protein α subunit GPA1 and cAMP. Genes Dev 11: 3206-3217.
Bahn, Y.S., Xue, C., Idnurm, A., Rutherford, J.C., Heitman, J., and Cardenas, M.E. (2007) Sensing the environment: lessons from fungi. Nat Rev Microbiol 5: 57-69. Bean, L.E., Dvorachek, W.H., Jr., Braun, E.L., Errett, A., Saenz, G.S., Giles, M.D., Werner-Washburne, M., Nelson, M.A., and Natvig, D.O. (2001) Analysis of the pdx-1 (snz-1/sno-1) region of the Neurospora crassa genome: correlation of pyridoxine-requiring phenotypes with mutations in two structural genes. Genetics 157: 1067-1075. Bennett, R.J., and Johnson, A.D. (2006) The role of nutrient regulation and the Gpa2 protein in the mating pheromone response of C. albicans. Mol Microbiol 62: 100-119. Casadevall, A., and Perfect, J.R. (1998) Cryptococcus neoformans. ASM Press, Washington, D.C. Casamayor, A., and Snyder, M. (2002) Bud-site selection and cell polarity in budding yeast. Curr Opin Microbiol 5: 179-186. Chen, T., Hiroko, T., Chaudhuri, A., Inose, F., Lord, M., Tanaka, S., Chant, J., and Fujita, A. (2000) Multigenerational cortical inheritance of the Rax2 protein in orienting polarity and division in yeast. Science 290: 1975-1978. Dominici, P., Scholz, G., Kwok, F., and Churchich, J.E. (1988) Affinity labeling of pyridoxal kinase with adenosine polyphosphopyridoxal. J Biol Chem 263: 14712-14716. Dutcher, S. (2006) Recombination hotspots flank the Cryptococcus mating-type locus: Implications for the evolution of a fungal sex chromosome. PLoS Genet 2: e184. Edman, J.C., and Kwon-Chung, K.J. (1990) Isolation of the URA5 gene from Cryptococcus neoformans var. neoformans and its use as a selective marker for transformation. Mol Cell Biol 10: 4538-4544. Fischer-Parton, S., Parton, R.M., Hickey, P.C., Dijksterhuis, J., Atkinson, H.A., and Read, N.D. (2000) Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J Microsc 198: 246-259. Fraser, J.A., Subaran, R.L., Nichols, C.B., and Heitman, J. (2003) Recapitulation of the sexual cycle of the primary fungal pathogen Cryptococcus neoformans var. gattii: implications for an outbreak on Vancouver Island, Canada. Eukaryot Cell 2: 1036-1045. Gimeno, C.J., and Fink, G.R. (1992) The logic of cell division in the life cycle of yeast. Science 257: 626. Gonzalez, E., Danehower, D., and Daub, M.E. (2007) Vitamer levels, stress response, enzyme activity, and gene regulation of Arabidopsis lines mutant in the pyridoxine/pyridoxamine 5'-phosphate oxidase (PDX3) and the pyridoxal kinase (SOS4) genes involved in the vitamin B6 salvage pathway. Plant Physiol 145: 985-996. Guthrie, C., and Fink, G.R. (1991) Guide to yeast genetics and molecular biology. Academic Press, San Diego. Harkins, H.A., Page, N., Schenkman, L.R., De Virgilio, C., Shaw, S., Bussey, H., and Pringle, J.R. (2001) Bud8p and Bud9p, proteins that may mark the sites for bipolar budding in yeast. Mol Biol Cell 12: 2497-2518. Hoang, L.M., Maguire, J.A., Doyle, P., Fyfe, M., and Roscoe, D.L. (2004) Cryptococcus neoformans infections at Vancouver Hospital and Health Sciences Centre (1997-2002): epidemiology, microbiology and histopathology. J Med Microbiol 53: 935-940. Hull, C.M., and Heitman, J. (2002) Genetics of Cryptococcus neoformans. Annu Rev Genet 36: 557-615. Idnurm, A., Bahn, Y.S., Nielsen, K., Lin, X., Fraser, J.A., and Heitman, J. (2005) Deciphering the model pathogenic fungus Cryptococcus neoformans. Nat Rev Microbiol 3: 753-764. Idnurm, A., Reedy, J.L., Nussbaum, J.C., and Heitman, J. (2004) Cryptococcus neoformans virulence gene discovery through insertional mutagenesis. Eukaryot Cell 3: 420-429. Kanellis, P., Gagliardi, M., Banath, J.P., Szilard, R.K., Nakada, S., Galicia, S., Sweeney, F.D., Cabelof, D.C., Olive, P.L., and Durocher, D. (2007) A screen for suppressors of gross chromosomal rearrangements identifies a conserved role for PLP in preventing DNA lesions. PLoS Genet 3: e134. Kwon-Chung, K.J. (1975) A new genus, filobasidiella, the perfect state of Cryptococcus neoformans. Mycologia 67: 1197-1200. Kwon-Chung, K.J. (1976) Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans. Mycologia 68: 821-833. Kwon-Chung, K.J., Edman, J.C., and Wickes, B.L. (1992) Genetic association of mating types and virulence in Cryptococcus neoformans. Infect Immun 60: 602-605. Laber, B., Maurer, W., Scharf, S., Stepusin, K., and Schmidt, F.S. (1999) Vitamin B6 biosynthesis: formation of pyridoxine 5'-phosphate from 4-(phosphohydroxy)-L-threonine and 1-deoxy-D-xylulose-5-phosphate by PdxA and PdxJ protein. FEBS Lett 449: 45-48. Lengeler, K.B., Davidson, R.C., D'Souza, C., Harashima, T., Shen, W.C., Wang, P., Pan, X., Waugh, M., and Heitman, J. (2000) Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64: 746-785. Lin, X., and Heitman, J. (2006) The Biology of the Cryptococcus neoformans Species Complex. Annu Rev Microbiol 60: 69-105. Lin, X., Hull, C.M., and Heitman, J. (2005) Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 434: 1017-1021. Lin, Y.S. (2007) Dissection of the Cryptococcus neoformans light response and characterization of Cryptococcus neoformans SSN8 homologue. In: Department of Plant Pathology and Microbiology. National Taiwan University, pp. 121. Liou, C.H. (2006) Characterization of Cryptococcus neoformans SET2 homologue. In: Department of Plant Pathology and Microbiology. National Taiwan University, pp. 100. Lu, Y.K., Sun, K.H., and Shen, W.C. (2005) Blue light negatively regulates the sexual filamentation via the Cwc1 and Cwc2 proteins in Cryptococcus neoformans. Mol Microbiol 56: 480-491. Mittenhuber, G. (2001) Phylogenetic analyses and comparative genomics of vitamin B6 (pyridoxine) and pyridoxal phosphate biosynthesis pathways. J Mol Microbiol Biotechnol 3: 1-20. Moore, T.D., and Edman, J.C. (1993) The α-mating type locus of Cryptococcus neoformans contains a peptide pheromone gene. Mol Cell Biol 13: 1962-1970. Nasmyth, K.A. (1982) Molecular genetics of yeast mating type. Annu Rev Genet 16: 439-500. Ni, L., and Snyder, M. (2001) A genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae. Mol Biol Cell 12: 2147-2170. Padilla, P.A., Fuge, E.K., Crawford, M.E., Errett, A., and Werner-Washburne, M. (1998) The highly conserved, coregulated SNO and SNZ gene families in Saccharomyces cerevisiae respond to nutrient limitation. J Bacteriol 180: 5718-5726. Perfect, J.R., Toffaletti, D.L., and Rude, T.H. (1993) The gene encoding phosphoribosylaminoimidazole carboxylase (ADE2) is essential for growth of Cryptococcus neoformans in cerebrospinal fluid. Infect Immun 61: 4446-4451. Pukkila-Worley, R., and Alspaugh, J.A. (2004) Cyclic AMP signaling in Cryptococcus neoformans. FEMS Yeast Res 4: 361-367. Roman, E., Arana, D.M., Nombela, C., Alonso-Monge, R., and Pla, J. (2007) MAP kinase pathways as regulators of fungal virulence. Trends Microbiol 15: 181-190. Sakai, A., Kita, M., Katsuragi, T., Ogasawara, N., and Tani, Y. (2002) yaaD and yaaE are involved in vitamin B6 biosynthesis in Bacillus subtilis. J Biosci Bioeng 93: 309-312. Scholz, G., and Kwok, F. (1989) Brain pyridoxal kinase: photoaffinity labeling of the substrate-binding site. J Biol Chem 264: 4318-4321. Scott, T.C., and Phillips, M.A. (1997) Characterization of Trypanosoma brucei pyridoxal kinase: purification, gene isolation and expression in Escherichia coli. Mol Biochem Parasitol 88: 1-11. Shen, W.C., Davidson, R.C., Cox, G.M., and Heitman, J. (2002) Pheromones stimulate mating and differentiation via paracrine and autocrine signaling in Cryptococcus neoformans. Eukaryot Cell 1: 366-377. Sherman, F. (1991) Getting started with yeast. Methods Enzymol 194: 21. Tambasco-Studart, M., Titiz, O., Raschle, T., Forster, G., Amrhein, N., and Fitzpatrick, T.B. (2005) Vitamin B6 biosynthesis in higher plants. Proc Natl Acad Sci U S A 102: 13687-13692. Tanaka, T., Tateno, Y., and Gojobori, T. (2005) Evolution of Vitamin B6 (Pyridoxine) Metabolism by Gain and Loss of Genes. Mol Biol Evol 22: 243-250. Toffaletti, D.L., Rude, T.H., Johnston, S.A., Durack, D.T., and Perfect, J.R. (1993) Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. J Bacteriol 175: 1405-1411. Vidotto, V., Aoki, S., and Campanini, G. (1996) A vitamin-free minimal synthetic medium for Cryptococcus neoformans. Mycopathologia 133: 139-142. Wickes, B.L., Mayorga, M.E., Edman, U., and Edman, J.C. (1996) Dimorphism and haploid fruiting in Cryptococcus neoformans: association with the α-mating type. Proc Natl Acad Sci U S A 93: 7327-7331. Yeh, Y.L., Lin, Y.S., Su, B.J., and Shen, W.C. (2008) Suppressor screening reveals the components involved in the blue light mediated filamentation in Cryptococcus neoformans. Manuscript submitted for publication. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40306 | - |
dc.description.abstract | 隱球菌 (Cryptococcus neoformans) 為一人體伺機性病原真菌,主要感染免疫功能有缺陷之患者,如AIDS、癌症或長期服用類固醇等病患。隱球菌之感染由呼吸道吸入,經血液循環造成系統性感染,並可進一步導致真菌性腦膜炎,如未及時治療,可導致死亡。隱球菌在真菌分類地位上,屬於異宗交配型之擔子菌,一般培養條件下,為出芽生殖形式的酵母細胞,當環境中缺氮時,兩種不同交配型之細胞可進行交配,形成雙核菌絲,菌絲具有擔子菌之典型扣子體,並於菌絲末端產生擔子柄及四串擔孢子。本實驗室過去的研究,發現藍光可藉由Cwc1及Cwc2蛋白質抑制生殖菌絲之生成,並且為了解Cwc1及Cwc2如何調控光反應路徑,利用農桿菌轉殖系統 (Agrobaterium tumefaciens-mediated transformation, ATMT),隨機插入CWC1基因過度表現株之基因體中,篩選交配過程中可回復菌絲生長的轉殖株。其中,EG30轉殖株經反向聚合酶連鎖反應 (inverse PCR) 及定序比對後,發現T-DNA插入於隱球菌與酵母細胞出芽位置選擇相關蛋白質 (bud site selection-related protein) 基因上游的啟動子區域,此基因經序列比對後,發現為啤酒酵母菌 (Saccharomyces cerevisiae) BUD16的同源基因。在啤酒酵母菌的研究中發現,bud16突變株會造成雙倍體之酵母菌細胞,無法正常進行雙極性出芽生殖 (bipolar budding),並且多數細胞可於隨機位置進行出芽生殖;Bud16p為吡多醛激酶 (pyridoxal kinase),於維生素B6生合成路徑中,將吡多醛 (pyridoxal) 轉變成生物可利用的5’-磷酸吡多醛 (pyridoxal 5’-phosphate, PLP)。在隱球菌中,本研究建構了BUD16同源基因之過度表現株,發現在交配過程中,其生殖菌絲不論在照光及黑暗之情形下均受到抑制。此外,bud16突變株,在光照情形下,與野生型菌株比較,其生殖菌絲較早產生且生成量較野生型菌株為多;進一步比較細胞融合情形,不同交配型bud16突變株細胞融合率較野生型菌株為高。此外,在隱球菌單一交配型進行有性生殖 (monokaryotic fruiting) 的性狀方面,交配型α之bud16突變株仍具有與野生型菌株相似的單核菌絲形成之能力,而過度表現株卻完全抑制單核菌絲之生成。為探討有性生殖中BUD16與CWC1兩基因間之作用關係,本研究在CWC1過度表現背景下建構bud16突變株,發現其表現型與bud16突變株相似;而在cwc1突變株中過度表現BUD16基因,其表現型與BUD16過度表現株相似。由此觀察結果顯示,BUD16基因作用於CWC1基因之下游,並且於有性生殖過程中,扮演負向調控之角色。 | zh_TW |
dc.description.abstract | Light regulates the physiology, development and behavior of many organisms including fungi. Cryptococcus neoformans, a heterothallic basidiomycetous yeast, can sense blue light and negatively regulate the production of sexual filaments via the Cwc1 and Cwc2 proteins. To dissect this pathway, we conducted a suppressor screen utilized Agrobacterium tumefaciens-mediated transformation (ATMT) technique to identify mutants suppressing the mating phenotype of the CWC1 overexpression strain, which displayed no filaments under light illumination. Here, we report that the EG30 suppressor strain restored the filamentation to the wild-type level and T-DNA was confirmed to insert at the promoter of a gene homologous to the Saccharomyces cerevisiae BUD16. S. cerevisiae BUD16 gene was identified due to the random budding pattern in the homozygous diploid mutant. The Bud16p protein is a predicted pyridoxal kinase which converts pyridoxal into pyridoxal 5’-phosphate (PLP), the biologically active form of vitamin B6. In C. neoformans, overexpression of the BUD16 gene slightly reduced and delayed the production of dikaryotic filaments when compared to the wild-type strain. Meanwhile, we also found that the bud16 mutants produced mating filaments earlier and more than the wild-type strain and higher cell fusion efficiencies were also verified. On the other hand, monokaryotic filamentation, another sexual process involved the same sex of the MATα cells, appeared unaffected in the MATα bud16 mutants; however, overexpression of the BUD16 gene blocked this differentiation. In epistasis analysis, we found that the mating phenotype of the bud16 mutant under CWC1 overexpression background was similar to the bud16 mutant; while the phenotype of cwc1 gene deletion under the BUD16 overexpression strain was resemble to the BUD16 overexpression strain. These results suggested that BUD16 may be a negative regulator functioning downstream of the Cwc complex during the light-regulated sexual differentiation process. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T16:44:28Z (GMT). No. of bitstreams: 1 ntu-97-R94633012-1.pdf: 8557964 bytes, checksum: 1dcebece1a4192f4a4787c5c6d1cab10 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 誌謝 .......................................................................................................................... i
中文摘要 ................................................................................................................. ii Abstract ................................................................................................................... iv Chapter I Introduction ................................................................................... 1 1.1 Cryptococcus neoformans ............................................................................. 1 1.1.1 The life cycle of C. neoformans ......................................................... 2 1.1.2 Signaling transduction pathways control filamentation of C. neoformans ......................................................................................... 3 1.1.3 Photoresponse of C. neoformans ........................................................ 4 1.2 The study of S. cerevisiae BUD16 homologue ............................................. 5 1.2.1 Bud site selection in S. cerevisiae....................................................... 5 1.2.2 The study of pyridoxal kinase in S. cerevisiae ................................... 7 Chapter II Materials and Methods ............................................................. 10 2.1 Strains and media .......................................................................................... 10 2.2 Identification of the T-DNA insertion site of the EG30 suppressor strain .... 10 2.3 Micromanipulation of the basidiospores and progeny analysis .................... 11 2.4 Alignment of the Bud16 homologues and generation of the phylogenetic tree ................................................................................................................ 12 2.5 Construction of the BUD16 overexpression strain ........................................ 13 2.6 Deletion and reintroduction of the C. neoformans BUD16 gene .................. 13 2.7 Construction of the Bud16-mCherry fluorescence fusion protein ................ 15 2.8 Growth assay ................................................................................................. 16 2.9 Quantitative cell fusion assay ........................................................................ 17 2.10 Genomic DNA extraction and Southern blot analysis ................................. 18 2.11 RNA isolation and Northern blot analysis ................................................... 18 2.12 Mating and monokaryotic fruiting assay ..................................................... 19 2.13 Slide mating ................................................................................................. 19 2.14 DAPI staining and fluorescence observation .............................................. 20 Chapter III Results .......................................................................................... 21 3.1 Identification of the EG30 strain ................................................................... 21 3.2 Phylogenetic analysis of the C. neoformans Bud16 and related homologues 22 3.3 Overexpression of the BUD16 gene in C. neoformans ................................. 26 3.4 Disruption and reintroduction of the BUD16 gene in C. neoformans............ 27 3.5 Growth ability was unaffected in the bud16 mutants .................................... 28 3.6 Production of dikaryotic filaments and cell fusion efficiency increased in the crossed involved the bud16 mutants ...................................................... 28 3.7 Deletion of BUD16 displayed no effect in monokaryotic fruiting, but overexpression of the BUD16 gene blocked this process ............................ 30 3.8 Epistasis analysis of the BUD16 and CWC1 gene in the photoresponse pathway ......................................................................................................... 30 3.9 The fluorescent Bud16-mCh fusion protein was predominantly localized to the basidium .................................................................................................. 31 Chapter IV Discussion .................................................................................... 35 Figures and tables ................................................................................................ 41 References ............................................................................................................... 62 Appendix .................................................................................................................. 70 | |
dc.language.iso | en | |
dc.title | 隱球菌BUD16同源基因之研究 | zh_TW |
dc.title | Characterization of Cryptococcus neoformans BUD16 homologue | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉瑞芬,鄧述諄,藍忠昱,呂俊毅 | |
dc.subject.keyword | 隱球菌,藍光光反應,農桿菌轉殖系統,CWC1,CWC2,BUD16,吡,多醛激酶, | zh_TW |
dc.subject.keyword | Cryptococcus neoformans,blue light photoresponse,Agrobacterium tumefaciens-mediated transformation,CWC1,CWC2,BUD16,pyridoxal kinase, | en |
dc.relation.page | 69 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-08-01 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 8.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。