Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40280
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖文彬(Wen-Bin Liau)
dc.contributor.authorMan-Chi Liuen
dc.contributor.author劉曼琦zh_TW
dc.date.accessioned2021-06-14T16:43:57Z-
dc.date.available2011-08-04
dc.date.copyright2008-08-04
dc.date.issued2008
dc.date.submitted2008-07-31
dc.identifier.citation1. R. M. Cornell; U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrence and Users, Weinheim ; New York : VCH, 1996.
2. C. C. Berry; A. S G Curtis; J. Phys. D: Appl. Phys. 2003, 36, R198.
3. P. Tartaj; M. P. Morales; J. Phys. D: Appl. Phys. 2003, 36, R182.
4. B. D. Cullity, Introduction to Magnetic Materials, Reading, Mass.: ddison-Wesley Pub. Co., 1972.
5. U. Colombo; F. Gazzarrini; G. Lanzavecchia, Science 1965, 26, 1033.
6. R. M. Cornell; U. Schwertmann, Iron Oxides in the Laboratory: Preparation and Characterization, Weinheim ; New York : VCH, 1991
7. R.Massart, IEEE Trans. Magn. 1981, 17, 1247.
8. Y. S. Kang; S. Risbud; P. Stroeve, Chem. Mater. 1996, 8, 2209-2211.
9. T. Sugimoto, E. J. Matijevic, J. Colloid Interface Sci. 1980, 74, 227.
10. J. Park; K. An; Y. Hwang; T. Hyeon, Nature Materials 2004, 3, 891.
11. W. W. Yu; V. L. Colvin, Chem. Commun. 2004, 2306.
12. Y. Li; H. Liao; Y. Qian, Material Research Bulletin 1998, 33, 841.
13. S. Shufeng; L. Chunhui; W. Xun, Crystal Growth & Design 2005, 5, 391.
14. Y. Wang; J. F. Wong; X. Teng; H. Yang, Nano lett. 2003, 3, 1555.
15. B. Zhao; W.J. Brittain, Prog. Polym. Sci. 2000, 25, 677.
16. M. Kim; Y. Chen; Y. Liu; X. Peng, Adv. Mater. 2005, 17, 1429.
17. M. Lattuada; T. A. Hatton, J. AM. CHEM. SOC. 2007, 129, 12878.
18. K. Matyjaszewski , Controlled/Living Radical Polymerization. Progress in ATRP,NMP, and RAFT, ACS ; Washington, DC, 2000.
19. C. J. Hawker; A. W. Bosman; E. Harth, Chem. Rev. 2001, 101, 3661.
20. K. Matyjaszewski; J. Xia, Chem. Rev. 2001, 101, 2921.
21. M. Zhang; W. H. Ray, Ind. Eng. Chem. Res. 2001, 40, 4336.
22. J. S. Wang; K. Matyjaszewski, Macromolecules 1995,28, 7901.
23. T. E. Patten; K. Matyjaszewski, Adv. Mater. 1998, 10, 901.
24. H. Kong; C. Gao; D. Yan, Macromol. 2004, 37, 4022.
25. D. Li; Q. He; Y. Cui; J. Li, Chem. Mater. 2007, 19, 412-417.
26. T. Tanaka, Phys. Rev. Lett. 1978, 40, 820.
27. Y. H. Bae; T. Okano; S. W. Kim, J. Controlled Release 1989, 9, 271.
28. H. Kawas; A. Sakaki; H. Maeda, J. Phys. Chem. B 1997, 101, 5089.
29. T. Aoki; T. Nishimura; N. Ogata, React. Func. Polym. 1998, 37, 299.
30. M. G. Kodzwa; M. E. Staben; D. G. Rethwise, J. Membr. Sci. 1999, 158, 85.
31. I. C. Kwon; Y. H. Bae; S. W. Kim, Nature 1991, 354, 291.
32. T. Tanaka, Phys. Rev. Lett. 1978, 40, 820.
33. T. Takezawa; Y. Mori; K. Yoshizato, Biotechnology 1990, 8, 854.
34. Y. M. Sun; T. L. Huang, J. Membr. Sci 1996, 110, 211.
35. S. H. Hsu; T. L. Yu, Macromol. Rapid Commun. 2000, 21, 476.
36. Y. H. Bae; T. Okano; S. W. Kim, J. Polym. Sci. B 1990, 28, 923.
37. K. Otake; H. Inomata; M. Konno; S. Saito, Macromol. 1990, 23, 283.
38. T. Gelbrich; M. Feyen; A. M. Schmidt, Macromol. 2006, 39, 3469.
39. Y. Wang; X. Teng; J. S. Wang; H. Yang, Nano Lett. 2003, 3, 789.
40. M. Ciampolini; N. Nardi, Inorg. Chem. 1966, 5, 41.
41. L. M. Bronstein; X. Huang, Chem. Mater. 2007, 19, 3624.
42. (a) K. N. Jayachandran; A. T. Cox; D. E. Brooks, Macromolecules 2002, 35, 4247-4257. (b) K. N. Jayachandran; D. E. Brooks, Macromolecules 2003, 36, 591-598.
43. J. T. Rademacher; W. J. Brittain, Macromolecules 2000, 33, 284-288.
44. K. Matyjaszewski; J. Xia, Chem. Rev. 2001, 101, 2921.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40280-
dc.description.abstract本研究主要利用表面起始原子轉移自由基聚合法,在氧化鐵奈米粒子表面以'grafting from'的方式成長高分子-聚異丙基丙烯醯胺,形成核殼型之氧化鐵奈米複合粒子,其不僅保有氧化鐵原有之陶鐵磁性,表面所包覆之高分子-聚異丙基丙烯醯胺更進一步增加其親水性與生物相容性。
在合成上,我們利用熱裂解法合氧化鐵奈米顆粒,並藉由掌握錯合物的結構、熱裂解反應之反應溫度與反應系統中的油酸濃度,有效地控制氧化鐵奈米粒子之結構形態與粒徑分佈。而經由控制油酸在反應系統中之濃度,我們可以合成出不同粒徑大小之氧化鐵奈米顆粒,當油酸濃度愈高,氧化鐵奈米顆粒之粒徑愈大。接著為了進行氧化鐵之表面改質,我們利用配位基交換的方式,將2-bromo-2-methylpropionic acid (BrMPA)與citric acid sodium salt (CA-Na)吸附在氧化鐵之表面,並藉由UV-vis測得之檢量線做定量分析,得到BrMPA與CA-Na分別以1:1的比例吸附在氧化鐵之表面。
改質氧化鐵表面所使用之CA-Na可幫助氧化鐵良好分散於水中且不會破壞其表面結構,而BrMPA結構上之溴基則可起始ATRP聚合反應,與CuBr、tris[2-(dimethylamino)ethyl]amine (Me6TREN)所形成之催化劑進行氧化鐵表面之NIPAM單體的聚合成長。經由控制單體濃度在[M]/[I]=1000、2000、3000之比例下,可聚合出分子量分別為55700 (PDI=1.43)、85900 (PDI=1.45)及108000 (PDI=1.41)之氧化鐵/聚異丙基丙烯醯胺奈米複合粒子。
我們利用穿透式電子顯微鏡來觀察氧化鐵於聚合前後之形態,發現當高分子由氧化鐵表面聚合成長後,會在氧化鐵表面形成一有機殼層,當高分子之分子量增加,殼層厚度也會隨之增加。接著我們利用動態光散射分析儀與紫外光可見光光譜儀分析氧化鐵/聚異丙基丙烯醯胺奈米複合粒子之性質,發現當溫度產生變化時,氧化鐵外圍所包覆之高分子會產生相變化。在超過低臨界溶液溫度時,氧化鐵/聚異丙基丙烯醯胺奈米複合粒子之粒徑會縮小,同時在水溶液中會發生兩相分離的現象,造成其穿透度下降。而隨著氧化鐵/聚異丙基丙烯醯胺奈米複合粒子表面之高分子分子量增加,其低臨界溶液溫度會由32 ℃略微上升至34 ℃。最後我們利用超導量子干涉磁量儀探討氧化鐵奈米粒子於聚合前後,其磁場與磁化強度之關係變化,發現在扣除PNIPAM之重量後,氧化鐵奈米粒子本身之飽和磁化量維持仍維持一定,並且在室溫下仍呈現陶鐵磁性,顯示出氧化鐵之磁性質不會因為表面成長高分子而有所影響。
zh_TW
dc.description.abstractMagnetic core/shell nanoparticles with well-defined thickness of poly(N-isopropylacrylamide) (PNIPAM) were synthesized by 'grafting from' route using surface-initiated atom transfer radical polymerization technique. The resulting core-shell magnetite poly(N-isopropylacrylamide) nanocomposites not only retain the magnetic properties of magnetite but also improve their hydrophile and biocompatibility by the polymer shell.
Stable dispersions of monodispersed magnetite nanocrystal were prepared by the pyrolysis of iron carboxylate salts in the presence of oleic acid and then ligand-exchanged with a mixture of 2-bromo-2-methylpropionic acid (BrMPA)and citric acid sodium salt (CA-Na). CA-Na can help Fe3O4 to disperse in water without acid etching. The bromide groups in the surface-adsorbed BrMPA were used as initiator for the atom transfer radical polymerization (ATRP) of N-isopropylacrylamide (NIPAM) using CuBr/tris[2-(dimethylamino)ethyl]amine (Me6TREN) as catalyst. By varying the ratio of monomer to initiator concentration, Fe3O4@poly(N-isopropylacrylamide) with different molecular weights were successfully synthesized.
The magnetite Fe3O4 nanoparticles and the resulting Fe3O4@PNIPAM core-shell nanocomposites were characterized by TEM. When the molecular weights of the grafted PNIPAM chains increase, the thickness of shell increases. DLS and UV-vis were then employed to study the thermal phase transitions of PNIPAM at the surface of Fe3O4 nanoparticles. The diameter of Fe3O4@PNIPAM nanocomposites decreases abruptly as the system temperature exceeded the lower critical solution temperature (LCST) of PNIPAM. Moreover, the transmittance decreases abruptly in the temperature range 26-40 ℃ due to the phase separation of PNIPAM in water. As the molecular weights of the grafted PNIPAM chains increase, the LCST value increases slightly from 32 ℃ to 34 ℃. Finally, the effect of PNIPAM thickness on the magnetic behavior of these Fe3O4@PNIPAM core-shell nanocomposites was examined by SQUID. The results indicate the presence PNIPAM had no effect on yhe magnetization of Fe3O4 core.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:43:57Z (GMT). No. of bitstreams: 1
ntu-97-R95549015-1.pdf: 8999898 bytes, checksum: e9f23b8b79c05cd5a94bfecb691f7e61 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書.................................................................................................i
誌謝.......................................................................................................................ii
中文摘要..............................................................................................................iii
英文摘要................................................................................................................v
目錄.....................................................................................................................vii
圖目錄...................................................................................................................ix
表目錄................................................................................................................xiii
第一章 緒論與文獻回顧.....................................................................................1
1.1 前言...............................................................................................................1
1.2 磁性材料.......................................................................................................3
1.2.1 氧化鐵之簡介............................................................................................6
1.2.2 Fe3O4之合成..............................................................................................8
1.2.3 Fe3O4奈米粒子之表面修飾.....................................................................12
1.3 原子轉移自由基聚合反應,ATRP..............................................................16
1.3.1 表面起始原子轉移自由基聚合反應,SI-ATRP………………………...18
1.4 感溫性高分子.............................................................................................21
1.4.1 聚異丙基丙烯醯胺,PNIPAM..................................................................21
1.5 研究目的.....................................................................................................23
第二章 實驗......................................................................................................25
2.1 實驗藥品.....................................................................................................25
2.2 儀器.............................................................................................................29
2.3 合成Iron oleate complex...............................................................................32
2.4 氧化鐵(Fe3O4)奈米顆粒製備....................................................................33
2.5 合成citric acid sodium salt,CA-Na..............................................................34
2.6 製備Fe3O4@ 2-bromo-2-methylpropionic acid/citric acid sodium salt,
Fe3O4@BrMPA/CA-Na................................................................................35
2.7 合成tris[2-(dimethylamino)-ethyl]amine,Me6TREN…………....................36
2.8 製備Fe3O4@ Poly(N-isopropylacrylamide),Fe3O4@PNIPAM.......................37
第三章 結果與討論..........................................................................................38
3.1 氧化鐵(Fe3O4)奈米顆粒之合成分析...........................................................38
3.1.1 氧化鐵(Fe3O4)奈米顆粒之結構與性質分析.............................................46
3.2 Fe3O4@BrMPA/CA-Na之合成分析..............................................................52
3.2.1 Fe3O4@BrMPA/CA-Na之結構與性質分析................................................55
3.3 Fe3O4@ Poly(N-isopropylacrylamide),Fe3O4@PNIPAM之合成分析............61
3.3.1 Fe3O4@Poly(N-isopropylacrylamide), Fe3O4@PNIPAM之結構與性質
分析...........................................................................................................64
第四章 結論......................................................................................................81
參考文獻..............................................................................................................82
附錄
dc.language.isozh-TW
dc.subject氧化鐵zh_TW
dc.subject聚異丙基丙烯醯胺zh_TW
dc.subjectmagnetiteen
dc.subjectpoly(N-isopropylacrylamide)en
dc.title氧化鐵/聚異丙基丙烯醯胺核殼型奈米複合粒子之合成與性質研究zh_TW
dc.titleSynthesis and Characterization of Magnetite/Poly(N-isopropylacrylamide) Core-Shell Nanocompositesen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.coadvisor王立義(Leeyih Wang)
dc.contributor.oralexamcommittee邱文英(Wen-Yen Chiu),林昭吟(Jauyn Grace Lin)
dc.subject.keyword氧化鐵,聚異丙基丙烯醯胺,zh_TW
dc.subject.keywordmagnetite,poly(N-isopropylacrylamide),en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2008-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
8.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved