Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40275
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林唯芳(Wei-Fang Su)
dc.contributor.authorWei-Hsiang Wengen
dc.contributor.author翁偉翔zh_TW
dc.date.accessioned2021-06-14T16:43:51Z-
dc.date.available2013-08-04
dc.date.copyright2008-08-04
dc.date.issued2008
dc.date.submitted2008-07-30
dc.identifier.citation1. Perlin, J. From Space to Earth: The Story of Solar Electricity. Harvard University Press: Cambridge, MA, 2002.
2. Sun, S. S. and Sariciftci, N. S. Organic Photovoltaics. CRC Press: Boca Raton, FL
3. Shaheen, S. E.; Ginley, D. S.; Jabbour, G. E. and Guest Editors, MRS Bulletin 2005, 30, 10.
4. Tang, C. W. Appl. Phys. Lett. 1986, 48, 183.
5. Marks, R. N.; Halls, J. J. M.; Bradley, D. D. C.; Friend, R. H.;Homes, A. B. J. Phys.: Condens. Matter 1994, 6, 1379.
6. Gregg, B. A. J. Phys. Chem. B 2003, 107, 4688
7. Sariciftci, N. S. Primary Photoexcitations in Conjugated Polymers; World Scientific Publishing Co.: Singapore, 1998.
8. Bao, Z.; Dodabalapur, A.; Lovinger, A. Appl. Phys. Lett. 1996, 69, 4108.
9. Bozano, L.; Carter, S. A.; Scott, J. C.; Malliaras, G. G.; Brock, P. J. Appl. Phys. Lett. 1999, 74, 1132.
10. Kline, R. J.; Mcgehee, M. D.; Kadnikova, E. N.; Liu, J.; Frechet, J. M. J. Adv. Mater. 2003, 15, 1519.
11. Sirringhaus, H.; Tessler, N.; Friend, R. Science 1998, 280, 1741.
12. Babel, A.; Jenekhe, S. Adv. Mater. 2002, 14, 371.
13. Sze, S. M. VLSI Technology, 2nd ed.; McGraw-Hill Publishing Co.: New York, 1988.
14. Coakley, K. M. and McGehee, M. D. Chem. Mater. 2004, 16, 4533-4542
15. Sariciftci, N. D.; Braun, D.; Zhang, C.; Srdanov, V. I.; Heeger, A. J.; Stucky, G.; Wudl, F. Appl. Phys. Lett. 1993, 62, 585.
16. Halls, J. M.; Pichler, K.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Appl. Phys. Lett. 1996, 68, 3120.
17. Pettersson, L. A. A.; Roman, L. S.; Inganas, O. J. Appl. Phys. 1999, 86, 487.
18. Theander, M.; Yartsev, A.; Zigmantas, D.; Sundstro‥m, V.; Mammo, W.; Anderson, M. R.; Inganäs, O. Phys. Rev. B 2000, 61, 12957.
19. Savenije, T. J.; Warman, J. M.; Goossens, A. Chem. Phys. Lett. 1998, 287, 148.
20. Haugeneder, A.; Neges, M.; Kallinger, C.; Spirkl, W.; Lemmer, U.; Feldman, J.; Scherf, U.; Harth, E.; Gugel, A.; Mullen, K. Phys. Rev. B 1999, 59, 15346.
21. Savenije, T. J.; Warman, J. M.; Goossens, A. Chem. Phys. Lett. 1998, 287, 148.
22. Arango, A. C.; Johnson, L. R.; Bliznyuk, V. N.; Schlesinger, Z.; Carter, S.; Ho‥rhold, H. H. Adv. Mater. 2000, 12, 1689.
23. Yu, G.; Heeger, A. J. J. Appl. Phys. 1995, 78, 4510.
24. Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Nature 1995, 376, 498.
25. Granstrom, M.; Petritsch, K.; Arias, A. C.; Lux, A.; Andersson, M. R.; Friend, R. H. Nature 1998, 395, 257.
26. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789.
27. Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C. Appl. Phys. Lett. 2001, 78, 841.
28. Padinger, F.; Rittberger, R. S.; Sariciftci, N. S. Adv. Funct. Mater. 2003, 13, 85.
29. W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. 2005, 15, 1617
30. Erb, T.; Zhokhavets, U.; Gobsch, G.; Raleva, S.; Stühn, B.; Schilinsky, C. W. and Brabec, C. J. Adv. Funct. Mater. 2005, 15, 1193
31. Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K. and Yang Y. Natural Materials 2005, 4, 864.
32. Ko, C. J.; Lin, Y. K. and Chen. F. C. Adv. Mater. 2007, 19, 3520.
33. Greenham, N. C.; Peng, X.; Alivisatos, A. P. Phys. Rev. B 1996, 54, 17628.
34. Huynh, W. U.; Peng, X.; Alivisatos, A. P. Adv. Mater. 1999, 11, 923.
35. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425.
36. Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Nat. Mater. 2003, 2, 382.
37. Sun, B. Q.; Marx, E.; Greenham, N. C. Nano Lett. 2003, 3, 961.
38. Gur, I.; Fromer, N. A.; Chen, C. P.; Kanaras, A. G. and Alivisatos, A. P. Nano Letters, 2007, 7, 409
39. Coakley, K. M.; Liu, Y.; Goh, C. and McGehee, M. D. MRS Bulletin 2005, 30, 37.
40. Arango, A. C.; Carter, S. A.; Brock, P. J. Appl. Phys. Lett. 1999, 74, 1698.
41. Breeze, A. J.; Schlesinger, Z.; Carter, S. A.; Brock, P. J. Phys. Rev. B 2001, 64, 1252051.
42. Gebeyehu, D.; Brabec, C. J.; Sariciftci, N. S.; Vangeneugden, D.; Kiebooms, R.; Vanderzande, D.; Kienberger, F.; Schindler, H. Synth. Met. 2001, 125, 279.
43. Ravirajan, P.; Haque, S. A.; Durrant, J. R.; Poplavskyy, D.; Bradley, D. D. C.; Nelson, J. J. Appl. Phys. 2004, 95, 1473.
44. Wei, Q.; Hirota, K.; Tajima, K. and Hashimoto, K. Chem. Mater. 2006, 18, 5080.
45. Ulman, A.Chem. Rev. 1996, 96, 1533
46. Netzer, L. and Sagiv, J. J. Am. Chem. Soc. 1983, 105, 674
47. Bigelow, W. C. ; Pickett, D. L. and Zisman, W. J. Colloid Interface Sci. 1946, 1, 513
48. Polymeropoulos, E. E. and Sagiv, J. J. Chem. Phys. 1978, 69, 1836
49. Sagiv, J. J. Am. Chem. Soc. 1980, 102, 92
50. Yan, L.; Huck, W. T. S. and Whitesides, G. M. J. Macromol. Sci. C, 2004, 44, 2, 175
51. Jaehne, E.; Ferse, D.; Busch, G. and Adler, H.-J. P. Designed Monomers and Polymers, 2002, 5, 427
52. Greenham, N. C.; Peng, X. and Alivisatos, A. P. Phys. Rev. B 1996, 54, 17628
53. Milliron, D. J.; Alivisatos, A. P.; Pitois, C.; Edder, C. and Fréchet, M. J. Adv. Mater. 2003, 15, 1, 58
54. Locklin, J.; Patton, D.; Deng, S.; Baba, A.; Millan, M. and Advincula, R. C. Chem. Mater. 2004, 16, 5187
55. Ravirajan, P.; Peiro, A. M.; Nazeeruddin, M. K.; Graetzel, M.; Bradley, D. D. C.; Durrant, J. R. and Nelson, J. J. Phys. Chem. B 2006, 110, 7635
56. Goh, C.; Scully, S. R. and McGehee, M. D. J. Appl. Phys. 2007, 101, 114503
57. Lin, Y. Y.; Chu, T. H.; Chen, C. W. and Su, W. F. Appl. Phys. Lett. 2008, 92, 053312
58. Spanggaard, H. and Krebs, F. C. Solar Energy Materials & Solar Cells 2004, 83 125.
59. Salzner, U.; Lagowski, J. B.; Pickup, P.G. and Poirier, P.A. Synth. Met. 1998, 96 177.
60. Roncali, J. Chem. Rev. 1997, 97, 173-205
61. Kertez, M.; Koller, J.; Azman, A. J. Chem. Phys. 1977, 67, 1180.
62. Su, W. P.; Schrieffer, J. R.; Heeger, A. J. Phys. Rev. Lett. 1979, 42, 1698.
63. Lowe, J. P.; Kafafi, S. A. J. Am. Chem. Soc. 1984, 106, 5837.
64. Bre′das, J. L. J. Chem. Phys. 1985, 82, 3808.
65. Lee, Y-S.; Kertesz, M. J. Chem. Phys. 1988, 88, 2609.
66. H.A.M. van Mullekom,; Vekemans, J. A. J. M.; Havinga, E. E. and Meijer, E. W. Materials Science and Engineering 2001, 32, 1.
67. Devasagayaraj, A. and Tour, L. M. Macromolecules 1999, 32, 6425.
68. Brocks, G. and Tol, A. J. Phys. Chem. 1996, 100, 1838.
69. Brocks, G. and Tol, A. Synth. Met. 1996, 76, 213.
70. McCullough, R. D. J. Org. Chem. 1993, 58, 904
71. Mihaela Corina Iovu, Sheina, E. E.; Gil, R. R. and McCullough, R. D. Macromolecules 2005, 38, 8649
72. Wei, Y.; Yang, Y. and Yeh, J. M. Chem. Mater. 1996, 8, 265
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40275-
dc.description.abstract本研究中,為了改善有機/無機界面的相容性,合成出一系列全共軛分子做為界面改質劑,應用於聚己基噻吩/二氧化鈦層狀異質界面中。而為了避免改質劑對於界面的電荷分離與傳輸產生阻礙,界面改質劑的LUMO能階應位於聚己基噻吩與二氧化鈦之間。為達成此目標,在合成設計中,我們利用增加噻吩環數及導入donor-acceptor系統的概念,降低共軛分子的能隙值,並導入氰基丙烯酸基來達到降低LUMO的目的。合成部份以Kumada coupling與Stille coupling進行噻吩寡聚物與並苯二唑噻吩寡聚物的合成,再以Vilsmeier-Haack reaction在單邊導入醛基,最後以Knoevenagel condensation將氰基丙烯酸基導入分子中。 經核磁共振光譜與質譜的鑑定,證實界面改質劑確實被成功的合成及純化。由紫外/可見光吸收光譜也觀察到最大吸收波長隨環數增加有明顯紅位移,顯示能隙值逐漸下降的趨勢。利用循環伏安法測量界面改質劑之HOMO,搭配能隙值計算後,發現LUMO確實明顯降低,使改質劑之LUMO低於聚己基噻吩。此外,我們製備緻密二氧化鈦薄膜,作為層狀異質接面之電子受體,此緻密二氧化鈦薄膜採用噴霧裂解法製備,於450oC下燒結,二氧化鈦薄膜之晶型以XRD鑑定為anatse,表面型態則以掃描式電子顯微鏡觀察,發現其表面極為平坦。
接著將界面改質劑以自組裝單層膜的方式鍵結於二氧化鈦基材上,自組裝單層膜以EDX鑑定,顯示表面確實有改質劑分子的存在。並以接觸角量測觀察表面改質情形,發現改質後,二氧化鈦基材表面接觸角大於55o,呈現疏水性質。
利用聚己基噻吩塗佈於改質過之二氧化鈦基材表面,製備聚己基噻吩/二氧化鈦雙層異質接面結構,經由螢光光譜的測量顯示,隨改質劑分子能隙縮減與LUMO的降低,螢光焠滅效率漸增,顯示此一改變,確實能增加高分子與二氧化鈦之間的photo-induced charge transfer效率。
zh_TW
dc.description.abstractIn this study, a series of fully-conjugated molecules were synthesized and used as interface modifier (IM) to enhance the compatibility of PTs and TiO2. In order to prevent the charge separation and transport between the interface was blocked by IM, the LUMO level of IMs should between the LUMO of PTs and the conduction band of TiO2. For this reason, the bandgap of IMs were decreased by either increasing the number of thiophene rings or establishing a donor-acceptor structure. In addition, cyanoacrylic carboxyl group was introduced to the molecule structure of IMs. The electron-withdrawing group effectively decreases the LUMO and carboxyl moiety provides anchoring sites to binding with TiO2. The synthesis of IMs involves the synthesis of thiophene oligomers and thiophene derivate of bezothiadiazole by Kumada and Suzuki coupling. Then, Vilsmeier-Haack reaction was adopted to perform one-side formylation of conjugated molecules. Finally, a cyanoacrylic carboxyl group was introduced into the molecular structure by Knoevenagel condensation. The as-synthesized IMs were characterized by NMR and mass spectrometry. The UV/Vis absorption of IMs showed a visible red-shift with increasing thiophene rings, implying the decrease of bandgap. The HOMO level of IMs were determined by cyclic voltammetry and the LUMO level of these IMs were then calculated from the summation of HOMO and bandgap. The results indicated the LUMO of W-2, W-3 and W-4 were lower than that of P3HT. Then, the IMs were used as functional molecules to form self-assembled monolayers on a flat titania thin film. The flat dense-TiO2 thin film was made using spray-pyrolysis method of titanium precursor, followed by calcination at 450oC. Crystallization and morphology of the dense-TiO2 thin film was examined by XRD and scanning electron microscopy. The properties of SAMs were characterized using EDX and contact angle measurements. After being modified by IMs, the contact angle increased from approximate 0o to 55o, indicating the TiO2 surface became hydrophobic. Subsequently, poly(3-hexylthiophene) (P3HT) was spin-coated on top of the IM-covered TiO2 substrate to form a bilayer heterojunction. The PL spectra and quenching efficiency measurements of the thus-prepared heterojunction indicated the decrease of bandgap and LUMO level of cyanoacrylic carboxyl group-containing molecules enhances the photo-induced charge transfer efficiency between polymer and titania.en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:43:51Z (GMT). No. of bitstreams: 1
ntu-97-R95549029-1.pdf: 5023716 bytes, checksum: df6a176fc2afa112dcf6c1f3497e2928 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents誌謝 I
摘要 III
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 太陽能的發展沿革 2
1.3 研究動機與方法 3
第二章 文獻回顧 7
2.1 共軛高分子太陽能電池的發展沿革 7
2.1.1 Single Layer structure(Schottky Type) 7
2.1.2 Bilayer Heterojunction Structure 8
2.1.3 Bulk Heterjunction Structure 9
2.2 自組裝單層膜(Self-assembled Monolayer, SAM)及其在有機/無機異質界面太陽能電池的應用 16
2.2.1 自組裝單層膜 16
2.2.1 自組裝單層膜在異質界面之應用 18
2.3 能帶理論(Energy Band Theory)與共軛高分子 25
第三章 實驗 31
3.1 實驗藥品 31
3.2 實驗儀器 36
3.3 界面連接劑(Donor-Acceptor Linkers)之合成 38
3.3.1 Synthesis of 2-Cyano-3-(thiophen-2-yl)acrylic acid (W-1) 38
3.3.2 Synthesis of 3-(2,2'-bithiophen-5-yl)-2-cyanoacrylic acid (W-2) 40
3.3.3 Synthesis of 3-(2,2';5’,2”-terthiophen-5-yl)-2-cyanoacrylic acid (W-3) 43
3.3.4 Synthesis of 2-cyano-3-(5-(7-(thiophen-2-yl)benzothiadiazol-4-yl)thiophen-2-yl)acrylic acid (W-4) 47
3.4 聚己基噻吩(P3HT)之合成 52
3.4.1 Synthesis of 3-hexylthiophene 52
3.4.2 Synthesis of 2,5-dibromo-3-hexylthiophene 53
3.4.3 Synthesis of Poly(3-hexylthiophene) 54
3.5 二氧化鈦基材之製備 55
3.5.1 ITO玻璃之準備與清洗 55
3.5.2 二氧化鈦前驅物之配置 55
3.5.3 使用spray pyrolysis法製備dense-TiO2/ITO基材 55
3.5.4 使用氧電漿(oxygen plasma)清洗dense-TiO2/ITO基材 55
3.6 界面改質劑之自組裝單層膜的製備 56
3.7 界面改質劑鍵結於二氧化鈦基材表面含量之測定 56
3.7.1 熱重分析(Thermogravimetry Analysis, TGA) 56
3.8 使用循環伏安法(Cyclic Voltammetry, CV)測定界面改質劑之氧化電位 57
第四章 結果與討論 58
4.1 界面改質劑之合成分析 58
4.1.1噻吩寡聚物與並苯二唑噻吩衍生物的合成 59
4.1.2噻吩寡聚物與並苯二唑噻吩衍生物的formylation 61
4.1.3 Knoevenagel condensation 62
4.2 聚己基噻吩之合成與分析 64
4.3 界面改質劑之光學與電化學性質分析 67
4.3.1 紫外/可見光吸收光譜分析 67
4.3.2 循環伏安分析法 70
4.4 二氧化鈦基材之鑑定 75
4.5 自組裝單層膜與吸附量分析 78
4.5.1 界面改質劑鍵結於二氧化鈦表面之元素分析 78
4.5.2 自組裝單層膜接觸角量測 79
4.5.3 界面改質劑鍵結於二氧化鈦之含量分析 80
4.6 層狀混成材料性質分析 83
第五章 結論 85
參考文獻 86
附錄一 1H NMR圖譜 91
附錄二 13C NMR圖譜 109
附錄三 W系列界面改質劑分子之質譜 114
dc.language.isozh-TW
dc.title含氰基丙烯酸基共軛分子的合成與鑑定及其做為界面改質劑在聚己基噻吩/二氧化鈦層狀異質界面的應用zh_TW
dc.titleSynthesis and Characterization of Cyanoacrylic Carboxyl Group-Containing Conjugated Molecules and Their Application in P3HT/TiO2 Layered Heterojunction as Interface Modifiersen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.coadvisor王立義(Leeyih Wang)
dc.contributor.oralexamcommittee簡淑華(Shu-Hua Chien),戴子安(Chi-An Dai),曾勝茂
dc.subject.keyword自組裝單層膜,界面改質劑,二氧化鈦,聚己基噻,吩,層狀異質界面,zh_TW
dc.subject.keywordself-assembled monolayer,interface modifier,titanium oxide,bilayer heterojunction,en
dc.relation.page90
dc.rights.note有償授權
dc.date.accepted2008-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
4.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved