Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40246
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王立義
dc.contributor.authorYi-Ming Changen
dc.contributor.author張怡鳴zh_TW
dc.date.accessioned2021-06-14T16:43:18Z-
dc.date.available2010-08-08
dc.date.copyright2008-08-08
dc.date.issued2008
dc.date.submitted2008-08-01
dc.identifier.citation第一章
[1] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, Prog. Photovolt: Res. Appl. 2008, 16, 61.
[2] O. O’Regan, M. Grätzel, Nature 1991, 353, 737.
[3] http://www.konarka.com (Konarka Technologies, Inc.).
[4] D. A. Skoog, D. M. West, F. J. Holler, Fundamentals of Analytical Chemistry, Saunder College Pub., New York, 1988.
[5] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic, New York 1999.
[6] I. Parker, J. Appl. Phys. 1994, 75, 1656.
[7] N. S. Sariciftic, D. Draun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, F. Wudl, Appl. Phys. Lett. 1993, 62, 585.
[8] J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friends, S. C. Moratti, A. B. Holmes, Nature 1995, 78, 451.
[9] S. Günes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324.
[10] C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 15.
[11] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, M. T. Rispens, J. Appl. Phys. 2003, 94, 6849.
[12] J. M. Nunzi, C. R. Physique 2002, 3, 523.
[13] F. Yang, M. Shtein, S. R. Forrest, Nat. Mater. 2005, 4, 37.
[14] J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H.
Friend, S. C. Moratti, A. B. Holmes, Nature 1995, 376, 498.
[15] G. Yu, A. J. Heeger, J. Appl. Phys. 1995, 78, 4510.
[16] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789.
[17] http://www.iec.ch (International Electrotechnical Commission).
[18] http://www.astm.org (American Society for Testing and Materials).
[19] http://www.newport.com/oriel (Newport Oriel Instruments).
[20] V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Adv. Funct. Mater. 2006, 16, 2016.
[21] C. J. Brabec, Sol. Energy Mater. Sol. Cells 2004, 83, 273.
[22] W. Ma, C. Y. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. 2005, 15, 1617.
[23] C.J. Brabec, V. Dyakonov, J. Parisi, N.S. Sariciftci, Organic Photovoltaics: concepts and realization, Springer, New York 2003
[24] W. D. Gill, J. Appl. Phys. 1972, 43, 5033.
[25] J. Huang, G. Li, Y. Yang, Appl. Phys. Lett. 2005, 87, 112105.
[26] Q. Mohammad, S. S. Manoharan, J. Appl. Phys. 2005, 97, 96101.
[27] M. A. Abkowitz, J. S. Facci, W. W. Limburg, J. F. Yanus, Phys. Rev. B 1992, 46, 6705.
[28] G. Horowitz, Adv. Funct. Mater. 1998, 10, 365.
[29] M. A. Lambert, P. Marks, Current Injection in Solids, Academic, New York 1983.
[30] C. Goh, R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. M. J. Fréchet, Appl. Phys. Lett. 2005, 86, 122110.
[31] P. N. Murgatroyd, J. Phys. D 1970, 3, 151.
第二章
[1] H. Shirakawa, C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, E. J. Louis, S. C. Gau, A. G. MacDiarmid, Phys. Rev. Lett. 1977, 39, 1098.
[2] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Formherz, J. C. Hummelen, Appl. Phys. Lett. 2001, 78, 841.
[3] P. A. van Hal, M. M. Wienk, J. M. Kroon, W. J. H. Verhees, L. H. Slooff, W. J. H. van Gennip, P. Jonkheijm, R. A. J. Janssen, Adv. Mater. 2003, 15, 118.
[4] W. J. E. Beek, M. M. Wienk, R. A. Janssen, Adv. Mater. 2004, 16, 1009.
[5] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, D. M. de Leeuw, Nature, 1999, 401, 685.
[6] K. Y. Jen, R. Oboodi, R. L. Elsenbaumer, Polym. Mater. Sci. Eng. 1985, 53, 79.
[7] R. L. Elsenbaumer, K. Y. Jen, R. Oboodi, Synth. Met. 1986, 15, 169.
[8] R. S. Loewe, P. C. Ewbank, J. Liu, L. Zhai, R. D. McCullough, Macromolecules. 2001, 34, 4324.
[9] R. D. McCullough, United States Patent 2000, 6 166 172.
[10] R. Sugimoto, S. Takeda, H. B. Gu, K. Yoshino, Chem. Express 1986, 1,635.
[11] R. D. McCullough, R. D. Lowe, M. Jayaraman, D. L. Anderson, J. Org. Chem. 1993, 58, 904.
[12] R. S. Loewe, S. M. Khersonsky, R. D. McCullough, Adv. Mater. 1999, 11, 250.
[13] T. A. Chen, X. Wu, R. D. Rieke, J. Am. Chem. Soc. 1995, 117, 233.
[14] A. Iraqi, G. W. Barker, J. Mater. Chem. 1998, 8, 25.
[15] S. Guillerez, G. Bidan, Synth. Met. 1998, 93, 123.
[16] R. D. McCullough, Adv. Mater. 1998, 10, 93.
[17] H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K. Bechgaard, B.M.W. Langeveld-Voss, A.J.H. Spiering, R.A.J. Janssen, E.W. Meijer, D.M. de Leeuw, Nature 1999, 401, 685.
[18] Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C. S. Ha, M. Ree, Nat. Mater. 2006, 5, 197.
[19] K. Sivula, C. K. Luscombe, B. C. Thompson, J. M. J. Fréchet, J. Am. Chem. Soc. 2006, 128, 13988.
[20] J. J. M. Hall, C. A. Walah, N. C. Greenham, E. A. Marsoglla, R. H. Friend, S. C. Morattl, A. B. Holmos, Nature 1995, 376, 498.
[21] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science 1992, 258, 1474.
[22] F. B. Kooistra, V. D. Mihailetchi, L. M. Popescu, D. Kronholm, P. W. M. Blom, J. C. Hummelen, Chem. Mater. 2006, 18, 3068.
[23] D. Mühlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana, C. J. Brabec, Adv. Mater. 2006, 18, 2884.
[24] M. M.Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. van Hal, R. A. J. Janssen, Angew. Chem. Int. Ed. 2003, 42, 3371.
[25] W. Ma, C.Y. Yang, X. Gong, K. Lee, A.J. Heeger, Adv. Funct. Mater. 2005, 15, 1617.
[26] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Nat. Mater. 2007, 6, 497.
[27] J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, A.J. Heeger, Science 2007, 317, 222.
[28] P. A. van Hal, M. M. Wienk, J. M. Kroon, W. J. H. Verhees, L. H. Slooff, W. J. H. van Gennip, P. Jonkheijm, R. A. J. Janssen, Adv. Mater. 2003, 15, 118.
[29] W. J. E. Beek, M. M. Wienk, R. A. J. Janssen, Adv. Mater. 2004, 16, 1009.
[30] W. J. E. Beek, M. M. Wienk, R. A. J. Janssen, Adv. Funct. Mater. 2006, 16, 1112.
[31] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science 2002, 295, 2425.
[32] I. Gur, N. A. Fromer, C. P. Chen, A. G. Kanaras, A. P. Alivisatos, Nano. Lett. 2007, 7, 409.
[33] W. U. Huynh, J. J. Dittmer, W. C. Libby, G. L. Whiting, A. P. Alivisatos, Adv. Funct. Mater. 2003, 13, 73.
[34] J. Liu, E. N. Kadnikova, Y. Liu, M. D. McGehee, J. M. J. Fréchet, J. Am. Soc. Chem. 2004, 126, 9486.
[35] J. Liu, T. Tanaka, K. Sivula, A. P. Alivisatos, J. M. J. Fréchet, J. Am. Soc. Chem. 2004, 126, 6550.
[36] F. Zhang, W. Mammo, L. M. Andersson, S. Admassie, M. R. Andersson, O. Inganäs, Adv. Mater. 2006, 18, 2169.
[37] C. Shi, Y. Yao, Y. Yang, Q. Pei, J. Am. Soc. Chem. 2006, 128, 8980.
[38] S. Karpe, A. Cravino, P. Frère, M. Allain, G. Mabon, J. Roncali, Adv. Funct. Mater. 2007, 17, 1163.
[39] L. M. Popescu, P. van’t Hof, A. B. Sieval, H. T. Jonkman, J. C. Hummelen, Appl. Phys. Lett. 2006, 89, 213507.
[40] I. Riedel, E. von Hauff, J. Parisi, N. Martín, F. Giacalone, V. Dyakonov, Adv. Funct. Mater. 2005, 15, 1979.
[41] S. Backer, K. Sivula, D. F. Kavulak, J. M. J. Fréchet, Chem. Mater. 2007, 19, 2927.
[42] J. Geng, T. Zeng, J. Am. Soc. Chem. 2006, 128, 16827.
[43] S. M. Lindner, S. Hüttner, A. Chiche, M. Thelakkat, G. Krausch, Angew. Chem. Int. Ed. 2006, 45, 3364.
[44] F. Padinger, R. S. Rittberger, N. S. Sariciftci, Adv. Funct. Mater. 2003, 13, 85.
[45] X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, R. A. J. Janssen, Nano Lett. 2005, 5, 579.
[46] T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stühn, P. Schilinsky, C. Waldauf, C. J. Brabec, Adv. Funct. Mater. 2005, 15, 1193.
[47] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864.
[48] V. Shrotriya, Y. Yao, G. Li, Y. Yang, Appl. Phys. Lett. 2006, 89, 063505.
[49] G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang, Adv. Funct. Mater. 2007, 17, 1636.
[50] Z. Zhu, D. Waller, R. Gaudiana, M. Morana, D. Mu1hlbacher, M. Scharber, C. J. Brabec, Macromolecules 2007, 40, 1981.
[51] J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, A. J. Heeger, J. Am. Soc. Chem. 2008, 130, 3619.
[52] Y. Yao, J. Hou, Z. Xu, G. Li, Y. Yang, Adv. Funct. Mater. 2008, 18, 1783.
[53] M. Reyes-Reyes, K. Kim, J. Dewald, R. López-Sandoval, A. Avadhanula, S. Curran, D. L. Carroll, Org. Lett. 2005, 7, 5749.
[54] H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, N. S. Sariciftci, Adv. Funct. Mater. 2004, 14, 1005.
[55] J. K. J. van Duren, X. Yang, J. Loos, C. W. T. Bulle-Lieuwma, A. B. Sieval, J. C. Hummelen, R. A. J. Janssen, Adv. Funct. Mater. 2004, 14, 425.
[56] K. Kim, J. Liu, M. A. G. Namboothiry, D. L. Carroll, Appl. Phys. Lett. 2007, 90, 163511.
[57] C. N. Hoth, S. A. Choulis, P. Schilinsky, C. J. Brabec, Adv. Mater. 2007, 19, 3973.
[58] S. S. Kim, S. I. Na, J. Jo, G. Tae, D. Y. Kim, Adv. Mater. 2007, 19, 4410.
[59] D. Vak, S. S. Kim, J. Jo, S. H. Oh, S. I. Na, J. Kim, D. Y. Kim, Appl. Phys. Lett. 2007, 91, 081102.
[60] P. Schilinsky, U. Asawapirom, U. Scherf, M. Biele, C. J. Brabec, Chem. Mater. 2005, 17, 2175.
[61] W. Ma, J. Y. Kim, K. Lee, A. J. Heeger, Macromol. Rapid Commun. 2007, 28, 1776.
[62] R. C. Hiorns, R. de Bettignies, J. Leroy, S. Bailly, M. Firon, C. Sentein, A. Khoukh, H. Preud’homme, C. Dagron-Lartigau, Adv. Funct. Mater. 2006, 16, 2263.
[63] S. Berson, R. De Bettignies, S. Bailly, S. Guillerez, Adv. Funct. Mater. 2007, 17, 1377.
[64] P. Destruel, H. Bock, I. Séguy, P. Jolinat, M. Oukachmih1, E. Bedel-Pereira, Polym. Int. 2006, 55, 601.
[65] J. S. Kim, M. Granström, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, J. Appl. Phys. 1998, 84, 6859.
[66] M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong, M. Wang, J. Appl. Phys. 1999, 86, 1688.
[67] F. Zhang, M. Johansson, M. R. Andersson, J. C. Hummelen, O. Inganäs, Adv. Mater. 2002, 14, 662.
[68] J. Quyang, C. W. Chu, F. C. Chen, Q. Xu, Y. Yang, Adv. Funct. Mater. 2005, 15, 203.
[69] Y. H. Ha, N. Nikolov, S. K. Pollack, J. Mastrangelo, B. D. Martin, R. Shashidhar, Adv. Funct. Mater. 2004, 14, 615.
[70] J. Y. Kim, M. H. Kwon, Y. K. Min, S. Kwon, D. W. Ihm, Adv. Mater. 2007, 19, 3501.
[71] A.D. Pasquier, H.E. Unalan, A. Kanwal, S. Miller, M. Chhowalla, Appl. Phys. Lett. 2005, 87, 203511.
[72] M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, R. H. Baughman, Science 2005, 309, 1215.
[73] T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, W. J. Feast, Appl. Phys. Lett. 1999, 75, 1679.
[74] J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, Xi. Gong, A. J. Heeger, Adv. Mater. 2006, 18, 572.
[75] K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, A. J. Heeger, Adv. Mater. 2007, 19, 2445.
[76] A. Hadipour, B. de Boer, P. W. M. Blom, Adv. Funct. Mater. 2008, 18, 1.
[77] C. N. Hoth, S. A. Choulis, P. Schilinsky, C. J. Brabec, Adv. Mater. 2007, 19, 3973.
[78] P. Schilinsky, C. Waldauf, C. J. Brabec, Adv. Funct. Mater. 2006, 16, 1669.
[79] S. S. Kim, S. I. Na, J. Jo, G. Tae, D. Y. Kim, Adv. Mater. 2007, 19, 4410.
[80] J. Huang, G. Li, Y. Yang, Adv. Mater. 2008, 20, 415.
[81] C. J. Ko, Y. K. Lin, F. C. Chen, Adv. Mater. 2007, 19, 3520.
[82] M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater. 2006, 18, 789.
[83] G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, C. J. Brabec, Adv. Mater. 2008, 20, 579.
[84] I. McCullough, M. Heeney, C. Bailey, K. Genevicius, I. Macdonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M. L. Chabincy, R. J. Kline, M. D. McGehee, M. F. Toney, Nat. Mater. 2006, 5, 328.
第三章
[1] H. Spanggaard, F. C. Krebs, Sol. Energy Mater. Sol. Cells 2004, 83, 125.
[2] E. Bundgaard, F. C. Krebs, Sol. Energy Mater. Sol. Cells 2007, 91, 954.
[3] S. Günes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324.
[4] F. C. Krebs, J. Alstrup, H. Spanggaard, K. Larsen, E. Kold, Sol. Energy Mater. Sol. Cells 2004, 83, 293.
[5] F.C. Krebs, H. Spanggaard, T. Kjær, M. Biancardo, J. Alstrup, Mater. Sci. En. B 2007, 138, 106.
[6] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J.C. Hummelen, Appl. Phys. Lett. 2001, 78, 841.
[7] F. Padinger, R. S. Rittberger, N. S. Sariciftci, Adv. Funct. Mater. 2003, 13, 85.
[8] W. Ma, C. Y. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. 2005, 15, 1617.
[9] C. J. Ko, Y. K. Lin, F. C. Chen, Adv. Mater. 2007, 19, 3520.
[10] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864.
[11] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heeger, Science 2007, 317, 222.
[12] W. Ma, J. Y. Kim, K. Lee, A. J. Heeger, Macromol. Rapid Commun. 2007, 28, 1776.
[13] Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C. S. Ha, M. Ree, Nat. Mater. 2006, 5, 197.
[14] E. J. Zhou, Z. Tan, C. H. Yang, Y. F. Li, Macromol. Rapid Commun. 2006, 27, 793.
[15] C. Goh, R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. M. J. Fréchet, Appl. Phys. Lett. 2005, 86, 122110.
[16] F. C. Krebs, J. E. Carlé, N. Cruys-Bagger, M. Andersen, M. R. Lilliedal, M.A. Hammond, S. Hvidt, Sol. Energy Mater. Sol. Cells 2005, 86, 499.
[17] K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D. D. C. Bradley, J. R. Durrant, Sol. Energy Mater. Sol. Cells 2006, 90, 3520.
[18] R. Pacios, A. J. Chatten, K. Kawano, J. R. Durrant, D. D. C. Bradley, J. Nelson, Adv. Funct. Mater. 2006, 16, 2117.
[19] F. C. Krebs, H. Spanggaard, Chem. Mater. 2005, 17, 5235.
[20] F. C. Krebs, K. Norrman, Prog. Photovolt: Res. Appl. 2007, 15, 697.
[21] R. J. Kline, M. D. McGehee, M. F. Toney, Nat. Mater. 2006, 5, 222.
[22] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, D. M. de Leeuw, Nature 1999, 401, 685.
[23] M. S. A. Abdou, S. Holdcroft, Macromolecules 1993, 26, 2954.
[24] B. H. Cumpston, K. F. Jensen, Trends Polym. Sci. 1996, 4, 151.
[25] P. J. Brown, D. S. Thomas, A. Köhler, J. S. Wilson, J. S. Kim, C. M. Ramsdale, H. Sirringhaus, R. H. Friend, Phys. Rev. B 2003, 67, 064203.
[26] T. A. Chen, X. Wu, R. D. Rieke, J. Am. Chem. Soc. 1995, 117, 233.
[27] D. L. Pavia, G. M. Lampman, G. S. Kriz, Introduction to Spectroscopy: A Guide for Students of Organic Chemistry, Harcourt Brace College Publishers, Fort Worth, 1996.
[28] L. L. Chua, J. Zaumseil, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus, R. H. Friend, Nature 2005, 434, 194.
[29] L. S. Roman, O. Inganäs, Synth. Met. 2002, 125, 419.
[30] M. Brinkmann, P. Rannou, Adv. Funct. Mater. 2007, 17, 101.
[31] R. S. Loewe, S. M. Khersonsky, R. D. McCullough, Adv. Mater. 1999, 11, 250.
[32] V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Adv. Funct. Mater. 2006, 16, 2016.
第四章
[1] P. A. van Hal, M. M. Wienk, J. M. Kroon, W. J. H. Verhees, L. H. Slooff, W. J. H. van Gennip, P. Jonkheijm, R. A. J. Janssen, Adv. Mater. 2003, 15, 118.
[2] C. Y. Kwong, A. B. Djurišic, P. C. Chui, K. W. Cheng, W. K. Chan, Chem. Phys. Lett. 2004, 384, 372.
[3] P. D. Cozzoli, A. Kornowski, H. Weller, J. Am. Chem. Soc. 2003, 125, 14539.
[4] Y. W. Jun, M. F. Casula, J. H. Sim, S. Y. Kim, J. Cheon, A. P. Alivisatos, J. Am. Chem. Soc. 2003, 125, 15981.
[5] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 1998, 14, 3160.
[6] J. Liu, E. N. Kadnikova, Y. Liu, M. D. McGehee, J. M. J. Fréchet, J. Am. Soc. Chem. 2004, 126, 9486.
[7] J. K. Lee, W. S. Kim, H. J. Lee, W. S. Shin, S. H. Jin, W. K. Lee, M. R. Kim, Polym. Adv. Technol. 2006, 17, 709.
[8] M. R. Kim, W. S. Shin, W. S. Kim, H. J. Lee, S. H. Park, J. K. Lee, S. H. Jin, Mol. Cryst. Liq. Cryst. 2007, 462, 91.
[9] Y. Y. Lin, T. H. Chu, C. W. Chen, W. F. Su, Appl. Phys. Lett. 2008, 92, 053312.
[10] K. A. Murray, S. C. Moratti, D. R. Baigent, N. C. Greenham, K. Pichler, A. B. Holmes, R. H. Friend, Synth. Met. 1995, 69, 395.
[11] A. Bolognesi, R. Mendichi, A. Schieroni, D. Villa, O. Ahumada, Macromol. Chem. Phys. 1997, 198, 3277.
[12] J. Yu, S. Holdcroft, Macromolecules 2000, 33, 5073.
[13] M. Kubo, C. Takimoto, Y. Minami, T. Uno, T. Itoh, M. Shoyama, Macromolecules 2005, 38, 7314.
[14] R. D. McCullough, R. D. Lowe, M. Jayaraman, D. L. Anderson, J. Org. Chem. 1993, 58, 904.
[15] T. A. Chen, X. Wu, R. D. Rieke, J. Am. Chem. Soc. 1995, 117, 233.
[16] P. J. Brown, D. S. Thomas, A. Köhler, J. S. Wilson, J. S. Kim, C. M. Ramsdale, H. Sirringhaus, R. H. Friend, Phys. Rev. B 2003, 67, 064203.
[17] Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C. S. Ha, M. Ree, Nat. Mater. 2006, 5, 197.
[18] L. L. Chua, J. Zaumseil, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus, R. H. Friend, Nature 2005, 434, 194.
[19] K. Sivula, Z. T. Ball, N. Watanabe, J. M. J. Fréchet, Adv. Mater. 2006, 18, 206.
[20] W. Ma, C.Y. Yang, X. Gong, K. Lee, A.J. Heeger, Adv. Funct. Mater. 2005, 15, 1617.
[21] G. G. Malliaras, J. R. Salem, P. J. Brock, C. Scott, Phys. Rev. B 1998, 58, 13411.
[22] C. Goh, R.J. Kline, M.D. McGehee, E.N. Kadnikova, J.M.J. Fréchet, Appl. Phys. Lett. 2005, 86, 122110.
[23] V. D. Mihailetchi, H. Xie, B. de Boer, L. J. A. Koster, P. W. M. Blom, Adv. Funct. Mater. 2006, 16, 699.
[24] L.S. Roman, O. Inganäs, Synth. Met. 2002, 125, 419.
[25] J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, Xi. Gong, A. J. Heeger, Adv. Mater. 2006, 18, 572.
第五章
[1] Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C. S. Ha, M. Ree, Nat. Mater. 2006, 5, 197.
[2] R. D. McCullough, R. D. Lowe, M. Jayaraman, D. L. Anderson, J. Org. Chem. 1993, 58, 904.
[3] T. A. Chen, X. Wu, R. D. Rieke, J. Am. Chem. Soc. 1995, 117, 233.
[4] H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K. Bechgaard, B.M.W. Langeveld-Voss, A.J.H. Spiering, R.A.J. Janssen, E.W. Meijer, D.M. de Leeuw, Nature 1999, 401, 685.
[5] C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 15.
[6] G. Li, V. Shrotriya, Y. Yao, J. Huang, Y. Yang, J. Mater. Chem. 2007, 17, 3126.
[7] B. C. Thompson, J. M. J. Fréchet, Angew. Chem. Int. Ed. 2007, 46, 2.
[8] W. Ma, C. Y. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. 2005, 15, 1617.
[9] K. Kim, J. Liu, M. A. G. Namboothiry, D. L. Carroll, Appl. Phys. Lett. 2007, 90, 163511.
[10] X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, R. A. J. Janssen, Nano Lett. 2005, 5, 579.
[11] T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stühn, P. Schilinsky, C. Waldauf, C. J. Brabec, Adv. Funct. Mater. 2005, 15, 1193.
[12] F. Padinger, R. S. Rittberger, N. S. Sariciftci, Adv. Funct. Mater. 2003, 13, 85.
[13] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864.
[14] G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang, Adv. Funct. Mater. 2007, 17, 1636.
[15] C. J. Ko, Y. K. Lin, F. C. Chen, Adv. Mater. 2007, 19, 3520.
[16] P. J. Brown, D. S. Thomas, A. Köhler, J. S. Wilson, J. S. Kim, C. M. Ramsdale, H. Sirringhaus, R. H. Friend, Phys. Rev. B 2003, 67, 064203.
[17] G. G. Malliaras, J. R. Salem, P. J. Brock, C. Scott, Phys. Rev. B 1998, 58, 13411.
[18] C. Goh, R.J. Kline, M.D. McGehee, E.N. Kadnikova, J.M.J. Fréchet, Appl. Phys. Lett. 2005, 86, 122110.
[19] V. D. Mihailetchi, H. Xie, B. de Boer, L. J. A. Koster, P. W. M. Blom, Adv. Funct. Mater. 2006, 16, 699.
[20] L.S. Roman, O. Inganäs, Synth. Met. 2002, 125, 419.
[21] V. Shrotriya, Y. Yao, G. Li, Y. Yang, Appl. Phys. Lett. 2006, 89, 063505.
[22] J. Huang, G. Li, Y. Yang, Appl. Phys. Lett. 2005, 87, 112105.
[23] E. Barsoukov, J. R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Application, Wiley Interscience Publications 2005.
[24] G. J. Brug, A. L. G. van den Eeden, M. Sluyters-Rehbach, J. H. Sluyters, J. Electroanal. Chem. 1984, 176, 275.
[25] J. P. Meyers, M. Doyle, R. M. Darling, J. Newmana, J. Electrochem. Soc. 2000, 147, 2930.
[26] Y. M. Chang, W. F. Su, L. Wang, Sol. Energy Mater. Sol. Cells 2008, 92, 761.
[27] R. S. Loewe, S. M. Khersonsky, R. D. McCullough, Adv. Mater. 1999, 11, 250.
[28] V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Adv. Funct. Mater. 2006, 16, 2016.
第六章
[1] C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 15.
[2] G. Li, V. Shrotriya, Y. Yao, J. Huang, Y. Yang, J. Mater. Chem. 2007, 17, 3126.
[3] B. C. Thompson, J. M. J. Fréchet, Angew. Chem. Int. Ed. 2007, 46, 2.
[4] F. C. Krebs, J. Alstrup, H. Spanggaard, K. Larsen, E. Kold, Sol. Energy Mater. Sol. Cells 2004, 83, 293.
[5] F. C. Krebs, H. Spanggaard, T. Kjær, M. Biancardo, J. Alstrup, Mater. Sci. En. B 2007, 138, 106.
[6] Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C. S. Ha, M. Ree, Nat. Mater. 2006, 5, 197.
[7] R. D. McCullough, R. D. Lowe, M. Jayaraman, D. L. Anderson, J. Org. Chem. 1993, 58, 904.
[8] T. A. Chen, X. Wu, R. D. Rieke, J. Am. Chem. Soc. 1995, 117, 233.
[9] W. Ma, C. Y. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. 2005, 15, 1617.
[10] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864.
[11] K. Kim, J. Liu, M. A. G. Namboothiry, D. L. Carroll, Appl. Phys. Lett. 2007, 90, 163511.
[12] X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, R. A. J. Janssen, Nano Lett. 2005, 5, 579.
[13] T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stühn, P. Schilinsky, C. Waldauf, C. J. Brabec, Adv. Funct. Mater. 2005, 15, 1193.
[14] F. Padinger, R. S. Rittberger, N. S. Sariciftci, Adv. Funct. Mater. 2003, 13, 85.
[15] G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang, Adv. Funct. Mater. 2007, 17, 1636.
[16] C. J. Ko, Y. K. Lin, F. C. Chen, Adv. Mater. 2007, 19, 3520.
[17] C. N. Hoth, S. A. Choulis, P. Schilinsky, C. J. Brabec, Adv. Mater. 2007, 19, 3973.
[18] P. Schilinsky, C. Waldauf, C. J. Brabec, Adv. Funct. Mater. 2006, 16, 1669.
[19] S. S. Kim, S. I. Na, J. Jo, G. Tae, D. Y. Kim, Adv. Mater. 2007, 19, 4410.
[20] A. J. Moulé, K. Meerholz, Adv. Mater. 2008, 20, 240.
[21] L. Li, G. Lu, X. Yang, J. Mater. Chem. 2008, 18, 1984.
[22] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Nat. Mater. 2007, 6, 497.
[23] J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, A. J. Heeger, J. Am. Chem. Soc. 2008, 130, 3619.
[24] P. J. Brown, D. S. Thomas, A. Köhler, J. S. Wilson, J. S. Kim, C. M. Ramsdale, H. Sirringhaus, R. H. Friend, Phys. Rev. B 2003, 67, 064203.
[25] M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater. 2006, 18, 789.
[26] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, M. T. Rispens, J. Appl. Phys. 2003, 94, 6849.
[27] K. Tamao, S. Kodama, I. Nakajima, M. Kumada, A. Minato, K. Suzuki, Tetrahedron 1982, 38, 3347.
[28] R. S. Loewe, S. M. Khersonsky, R. D. McCullough, Adv. Mater. 1999, 11, 250.
[29] V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Adv. Funct. Mater. 2006, 16, 2016.
第七章
[1] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Formherz, J. C. Hummelen, Appl. Phys. Lett. 2001, 78, 841.
[2] S. Berson, R. De Bettignies, S. Bailly, S. Guillerez, Adv. Funct. Mater. 2007, 17, 1377.
[3] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864.
[4] V. Shrotriya, Y. Yao, G. Li, Y. Yang, Appl. Phys. Lett. 2006, 89, 063505.
[5] G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang, Adv. Funct. Mater. 2007, 17, 1636.
[6] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Nat. Mater. 2007, 6, 497.
[7] J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, A. J. Heeger, J. Am. Chem. Soc. 2008, 130, 3619.
[8] Y. Yao, J. Hou, Z. Xu, G. Li, Y. Yang, Adv. Funct. Mater. 2008, 18, 1783.
[9] A. J. Moulé, K. Meerholz, Adv. Mater. 2008, 20, 240.
[10] L. Li, G. Lu, X. Yang, J. Mater. Chem. 2008, 18, 1984.
[11] H. G. Elias, An introduction to polymer science, Weinheim, Cambridge, 1997 p220.
[12] E. A. Grulke, Polymer Handbook, J. Brandrup, E. H. Immergut Eds., Wiley, New York 1989 p519.
[13] R. A. Alberty, R. J. Silbey, Physical chemistry, Wiley, New York, 1997 p186.
[14] M. V. Lauritzen, Solvato-Controlled Doping of Poly(3-alkyithiophene)s and Other Conjugated Polymers Using Silver (I) Triflate, Master Thsis, Simon Frase University 1995 p60.
[15] Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C. S. Ha, M. Ree, Nat. Mater. 2006, 5, 197.
[16] P. J. Brown, D. S. Thomas, A. Köhler, J. S. Wilson, J. S. Kim, C. M. Ramsdale, H. Sirringhaus, R. H. Friend, Phys. Rev. B 2003, 67, 064203.
[17] M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater. 2006, 18, 789.
[18] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, M. T. Rispens, J. Appl. Phys. 2003, 94, 6849.
[19] E. Barsoukov, J. R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Application, Wiley Interscience Publications 2005.
[20] G. J. Brug, A. L. G. van den Eeden, M. Sluyters-Rehbach, J. H. Sluyters, J. Electroanal. Chem. 1984, 176, 275.
[21] J. P. Meyers, M. Doyle, R. M. Darling, J. Newmana, J. Electrochem. Soc. 2000, 147, 2930.
[22] P. Schilinsky, U. Asawapirom, U. Scherf, M. Biele, C. J. Brabec, Chem. Mater. 2005, 17, 2175.
[23] W. Ma, J. Y. Kim, K. Lee, A. J. Heeger, Macromol. Rapid Commun. 2007, 28, 1776.
[24] R. C. Hiorns, R. de Bettignies, J. Leroy, S. Bailly, M. Firon, C. Sentein, A. Khoukh, H. Preud’homme, C. Dagron-Lartigau, Adv. Funct. Mater. 2006, 16, 2263.
[25] R. J. Kline, M.D. McGehee, E.N. Kadnikova, J. Liu, J.M.J. Fréchet, Adv. Mater. 2003, 15, 1519
[26] R. J. Kline, M.D. McGehee, M. F. Toney, Nat. Mater. 2006, 5, 222.
[27] A. Zen, M. Saphiannikova, D. Neher, J. Grenzer, S. Grigorian, U. Pietsch, U. Asawapirom, S. Janietz, U. Scherf, I. Lieberwirth, G. Wegner, Macromolecules 2006, 39, 2162.
[28] M. Brinkmann, P. Rannou, Adv. Funct. Mater. 2007, 17, 101.
[29] W. Ma, C. Y. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. 2005, 15, 1617.
[30] K. Kim, J. Liu, M. A. G. Namboothiry, D. L. Carroll, Appl. Phys. Lett. 2007, 90, 163511.
[31] R. S. Loewe, S. M. Khersonsky, R. D. McCullough, Adv. Mater. 1999, 11, 250.
[32] R. S. Loewe, P. C. Ewbank, J. Liu, L. Zhai, R. D. McCullough, Macromolecules. 2001, 34, 4324.
[33] A. Yokoyama, R. Miyakoshi, T. Yokozawa, Macromolecules. 2004, 37, 1169.
[34] K. Tamao, S. Kodama, I. Nakajima, M. Kumada, A. Minato, K. Suzuki, Tetrahedron 1982, 38, 3347.
[35] V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Adv. Funct. Mater. 2006, 16, 2016.
附錄四
[1] E. Barsoukov, J. R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Application, Wiley Interscience Publications 2005.
[2] G. J. Brug, A. L. G. van den Eeden, M. Sluyters-Rehbach, J. H. Sluyters, J. Electroanal. Chem. 1984, 176, 275.
[3] J. P. Meyers, M. Doyle, R. M. Darling, J. Newmana, J. Electrochem. Soc. 2000, 147, 2930.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40246-
dc.description.abstract高分子太陽能電池中異質接面層之形態為決定元件性能之重要關鍵,為求得一奈米尺度之電子施體/受體雙連續相交錯互穿網路式結構,提升異質材料間之相容性或使用適當之退火處理乃為一必要之異質接面形態最佳化程序,而本研究之主要貢獻在於成功開發出數種可針對高分子太陽能電池異質接面層形態進行調控之技術,並加以探討之。論文第一部份主要驗證共軛高分子,聚己烷噻吩[poly(3-hexylthiophene), P3HT]於大氣環境遭受光致氧化/劣化效應作用後,材料之有效共軛長度、光吸收/放射能力、結晶性與載子位移率等光電特性均會產生改變,進而造成異質接面形態與元件性能不盡理想,強調在有機光電元件發展上,若欲最佳化元件之品質與性能,除製程技術與製備環境之提升外,共軛高分子合成、純化程序與儲存環境亦須顧及,以確保材料品質,避免影響元件性能;論文第二部份則首先合成出一經由官能基改質而成之poly[3-hexylthiophene-co-3-(6-hydroxyhexyl) thiophene] (P3HT-OH)共軛高分子,再搭配原位溶凝膠反應與titanium (IV) n-butoxide進行一系列共軛高分子:二氧化鈦混成材料之製備。由於共軛高分子中hydroxyl基團的導入可明顯增加高分子與二氧化鈦間之交互作用,進而使二氧化鈦可均勻分散於高分子基質中,形成均勻之混成溶液與薄膜。而此混成材料可進一步作為一界面相容物質添加於P3HT與二氧化鈦中,形成具有優異掺混性之共軛高分子:二氧化鈦異質接面薄膜。相對於未添加該混成材料之異直接面薄膜而言,由該分散均勻之薄膜所製備之太陽能電池在光電流與能量轉換效率的表現上分別具有3.4倍與2.4倍之顯著增長,成功驗證了此一材料製備概念之可行性;而第三部份我們成功發展出一套利用外加直流電,於20秒之短暫時間對P3HT與 [6,6]-phenyl C61-butyric acid methyl ester (PCBM)所製備之太陽能電池進行異質接面形態修飾之技術。經由此直流電處理後之太陽能電池,其元件性能可有明顯的提升。而利用空間電荷限制電流與電化學阻抗分析對元件進行量測後可知,此方式可大幅改善P3HT:PCBM異質接面層之載子位移率以及總體電阻,且元件之能量轉換效率與穩定性完全不亞於傳統熱退火處理之太陽能電池,證明此一簡便、快速之製程可有效應用於提升高分子太陽能電池性能。最後,我們製備出一高效率不需退火處理之高分子異質接面太陽能電池,其方式係利用微量之3-hexylthiophene (3HT)作為成膜輔助溶劑,即添加少量P3HT之單體於P3HT與PCBM混合溶液中,並以簡易之旋轉塗佈法製備異質接面薄膜。利用如此薄膜所製作之太陽能電池可明顯地提升其光電流與有效輸出功率,而不再需要任何熱退火或是溶劑慢速揮發等處理程序。在利用紫外光-可見光吸收光譜、X-ray繞射光譜與穿透式電子顯微鏡對該免退火元件之異直接面薄膜進行細部探究後可知,3HT之輔助成膜有助於促進異質接面層中P3HT之光吸收度與結晶性增加,並且達到一理想之奈米尺度相分離形態。最重要的是此一免退火P3HT:PCBM太陽能電池在能量轉換效率與光致電子轉換效率表現上與一般熱退火處理元件相當,因此相信此一技術將來極具潛力可有效且廣泛地用於高分子太陽能電池發展。zh_TW
dc.description.abstractThe morphology of bulk-heterojunction layer is an important key in determining the performance of polymer-based solar cells. In order to obtain a nano-scaled bi-continuous interpenetrating network of electron donor/acceptor blend, desirable phase compatibility or annealing treatment is essential procedures for morphology optimization. Therefore, considerable efforts have been devoted to this study on controlling the morphology of bulk-heterojunction layer in the polymer-based solar cells. In the first part, we demonstrated that the light illumination of regioregular poly(3-hexylthiophene) (P3HT) in air resulted in the degradation of polymer, thus potentially reducing the conjugation length, the absorption/emission intensities, the size of the crystal domain and the charge-carrier mobility. These effects lead to undesirable morphology and poor performance of solar cells. Therefore, the development of efficient polymer solar cells depends not only on fabrication in an inert atmosphere, but also on the synthesis and storage of material in a suitable environment to ensure polymer quality. In the second part, a series of poly[3-hexylthiophene-co-3-(6-hydroxyhexyl)thiophene] (P3HT-OH):titania (TiO2) hybrids were synthesized via the in-situ sol-gel reaction of titanium (IV) n-butoxide in the presence of P3HT-OH. Introducing hydroxyl moiety onto the side chain of polymer significantly promotes the polymer-titania interaction, producing a uniform distribution of TiO2 throughout the polymer matrix in the hybrid solutions and hybrid films. Furthermore, this hybrid can be further utilized as an efficient compatibilizer in preparing photoactive P3HT:TiO2:hybrid films with excellent miscibility. The solar cell based on such a hybrid exhibited the 3.4 and 2.4-fold higher value of photocurrent and power conversion efficiency compared to the device based on P3HT:TiO2 blend without added hybrid. In the third part, we successfully demonstrated an novel electric annealing technique for fabricating efficient P3HT:[6,6]-phenyl C61-butyric acid methyl ester (PCBM) solar cells by applying a direct current in a short annealing time for only 20 sec. The solar cells based on this approach exhibited distinctly enhanced device performance. The results from space-charge limited current measurement and electrochemical impedance analysis indicated a significant improvement in the charge-carrier mobility and bulk resistance for thus-prepared P3HT:PCBM bulk-heterojunction films. The power conversion efficiency and stability of this solar cell was comparable to that of conventional thermally annealed devices. This approach provides an operationally simple and rapid process for improving the solar cell efficiency. Finally, an annealing-free solar cell fabrication technique based on the addition of small concentration of 3-hexylthiophene, the monomer of P3HT into the P3HT and PCBM blend solution from which the bulk-heterojunction layer was prepared by spin-cast was demonstrated. The polymer solar cells based on such films exhibited distinctly enhanced photocurrent and fill factor without any thermal annealing or solvent annealing process. The results from UV-vis absorption spectra, X-ray diffraction spectra, and TEM images indicated a significant improvement in the absorbance, crystallization, and nano-scaled morphological optimization for thus-prepared P3HT:PCBM bulk-heterojunction films. Very importantly, the solar cells fabricated from this annealing-free process performed similarly in power conversion efficiency and incident photo-to-electron conversion efficiency as conventionally annealed solar cells, indicating the feasibility of this simple and rapid annealing-free fabrication process.en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:43:18Z (GMT). No. of bitstreams: 1
ntu-97-D93549008-1.pdf: 30351871 bytes, checksum: a5448be3b8092a97abe87b0c0a7e1532 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents誌謝 i
摘要 iii
ABSTRACT v
目錄 vii
圖目錄 xi
表目錄 xix
第一章 緒論 1
1-1 前言 1
1-2 太陽能電池種類 1
1-3 能量轉移機制 3
1-4 高分子太陽能電池原理與結構 4
1-5 太陽光模擬光源 8
1-5-1 基準太陽光 8
1-5-2 模擬光源校正 10
1-6 太陽能電池與半導體特性量測 12
1-6-1 能量轉換效率 12
1-6-2 太陽能電池之等價電路 14
1-6-3 外部量子效率(光子致電子轉換效率) 15
1-6-4 有機分子之載子傳遞特性 15
1-7 本文目的 18
1-8 參考文獻 19
第二章 文獻回顧與評述 21
2-1 重要文獻回顧 21
2-1-1 高分子於太陽能電池光敏層之應用 21
2-1-2 異質接面層之材料性質與界面特性 26
2-1-3 異質接面層之形態控制 32
2-1-3-1 熱退火法(Thermal Annealing) 32
2-1-3-2 溶劑慢乾法(Solvent Annealing) 34
2-1-3-3 薄膜製程添加劑(Processing Additives) 35
2-1-4 異質接面層製備之參數與配方 38
2-1-5 元件結構設計 39
2-1-6 其他相關研究 42
2-2 文獻評述及研究動機 44
2-3 參考文獻 46
第三章 Regioregular Poly(3-hexylthiophene)之光致劣化效應對分子堆疊形態及光電性質之影響 51
3-1 前言與研究目的 51
3-2 結果與討論 52
3-3 結論 60
3-4 實驗部份 60
3-4-1 高分子製備 60
3-4-2 光學性質量測 61
3-4-3 元件製備與量測 61
3-5 參考文獻 62
第四章 具有良好有機/無機混掺相容性之Polythiophene:TiO2 Hybrids之合成與分析及其在高分子太陽能電池之應用 64
4-1 前言與研究目的 64
4-2 結果與討論 65
4-2-1 材料特性分析 65
4-2-2 太陽能電池之特性探討 73
4-2-3 異質接面形態分析 77
4-2-4 Polymer:TiO2 Hybrid於P3HT:PCBM元件之應用 80
4-3 結論 83
4-4 實驗部份 84
4-4-1 材料合成 84
4-4-2 元件製備 84
4-4-3 儀器設備 85
4-5 參考文獻 86
第五章 新型Electric Annealing技術製備高效率高分子太陽能電池 88
5-1 前言與研究目的 88
5-2 結果與討論 90
5-3 結論 111
5-4 實驗部份 112
5-5 參考文獻 113
第六章 Annealing-free高分子太陽能電池之製備 116
6-1 前言與研究目的 116
6-2 結果與討論 118
6-3 結論 125
6-4 實驗部份 126
6-5 參考文獻 127
第七章 異質溶劑對於Annealing-free高分子太陽能電池異質接面形態之影響 129
7-1 前言與研究目的 129
7-2 結果與討論 130
7-2-1 異質溶劑之溶解度效應對元件之影響 130
7-2-2 異質溶劑之濃度效應對元件之影響 138
7-2-3 電化學阻抗頻譜分析 143
7-2-4 高分子分子量對元件效率之影響 145
7-3 結論 151
7-4 實驗部份 152
7-4-1 高分子製備 152
7-4-2 太陽能電池製備 153
7-4-3 儀器設備 153
7-5 參考文獻 154
第八章 總結與展望 157
附錄一 參考電池(Reference Cell) 159
附錄二 高分子合成I 162
附錄三 高分子合成II 171
附錄四 電化學阻抗頻譜原理 175
相關研究成果 180
dc.language.isozh-TW
dc.title聚噻吩太陽能電池總體異質接面層之形態控制zh_TW
dc.titleMorphology Control of Bulk Heterojunction Layer in Polythiophene-based Solar Cellsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳錦地,陳貴賢,李君浩,梁文傑,林金福,何國川
dc.subject.keyword退火,異質接面,共軛高分子,形態,光伏元件,高分子太陽能電池,zh_TW
dc.subject.keywordAnnealing,Bulk-heterojunction,Conjugated Polymer,Morphology,Photovoltaic Devices,Polymer Solar Cells,en
dc.relation.page181
dc.rights.note有償授權
dc.date.accepted2008-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
29.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved