Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40242
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂紹俊(Shao-Chun Lu)
dc.contributor.authorYi-Ting Hsiehen
dc.contributor.author謝依庭zh_TW
dc.date.accessioned2021-06-14T16:43:13Z-
dc.date.available2009-09-11
dc.date.copyright2008-09-11
dc.date.issued2008
dc.date.submitted2008-08-01
dc.identifier.citation1. Lauritzen, L., et al., The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog Lipid Res, 2001. 40(1-2): p. 1-94.
2. Hamano, H., et al., Docosahexaenoic acid reduces GABA response in substantia nigra neuron of rat. J Neurophysiol, 1996. 75(3): p. 1264-70.
3. Langelier, B., et al., Changes of the transcriptional and fatty acid profiles in response to n-3 fatty acids in SH-SY5Y neuroblastoma cells. Lipids, 2005. 40(7): p. 719-28.
4. Carroll, K.K., Dietary fats and cancer. Am J Clin Nutr, 1991. 53(4 Suppl): p. 1064S-1067S.
5. Zerouga, M., et al., Phospholipid class as a determinant in docosahexaenoic acid's effect on tumor cell viability. Anticancer Res, 1996. 16(5A): p. 2863-8.
6. McLennan, P., et al., The cardiovascular protective role of docosahexaenoic acid. Eur J Pharmacol, 1996. 300(1-2): p. 83-9.
7. Laugharne, J.D., J.E. Mellor, and M. Peet, Fatty acids and schizophrenia. Lipids, 1996. 31 Suppl: p. S163-5.
8. Hibbeln, J.R. and N. Salem, Jr., Dietary polyunsaturated fatty acids and depression: when cholesterol does not satisfy. Am J Clin Nutr, 1995. 62(1): p. 1-9.
9. Menkes, J.H., et al., A sex-linked recessive disorder with retardation of growth, peculiar hair, and focal cerebral and cerebellar degeneration. Pediatrics, 1962. 29: p. 764-79.
10. Breckenridge, W.C., G. Gombos, and I.G. Morgan, The lipid composition of adult rat brain synaptosomal plasma membranes. Biochim Biophys Acta, 1972. 266(3): p. 695-707.
11. Neill, A.R. and C.J. Masters, Metabolism of fatty acids by ovine spermatozoa. J Reprod Fertil, 1973. 34(2): p. 279-87.
12. Wiegand, R.D. and R.E. Anderson, Phospholipid molecular species of frog rod outer segment membranes. Exp Eye Res, 1983. 37(2): p. 159-73.
13. Stillwell, W. and S.R. Wassall, Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids, 2003. 126(1): p. 1-27.
14. Robinson, D.R., et al., Modification of spleen phospholipid fatty acid composition by dietary fish oil and by n-3 fatty acid ethyl esters. J Lipid Res, 1993. 34(8): p. 1423-34.
15. VanMeter, A.R., et al., Aged lymphocyte proliferation following incorporation and retention of dietary omega-3 fatty acids. Mech Ageing Dev, 1994. 75(2): p. 95-114.
16. Stillwell, W., et al., Effect of docosahexaenoic acid on mouse mitochondrial membrane properties. Lipids, 1997. 32(5): p. 497-506.
17. Emmelot, P. and R.P. Van Hoeven, Phospholipid unsaturation and plasma membrane organization. Chem Phys Lipids, 1975. 14(3): p. 236-46.
18. Anderson, R.E. and L. Sperling, Lipids of ocular tissues. VII. Positional distribution of the fatty acids in the phospholipids of bovine retina rod outer segments. Arch Biochem Biophys, 1971. 144(2): p. 673-7.
19. Martinez, M., Tissue levels of polyunsaturated fatty acids during early human development. J Pediatr, 1992. 120(4 Pt 2): p. S129-38.
20. Dobbing, J. and J. Sands, Comparative aspects of the brain growth spurt. Early Hum Dev, 1979. 3(1): p. 79-83.
21. McCann, J.C. and B.N. Ames, Is docosahexaenoic acid, an n-3 long-chain polyunsaturated fatty acid, required for development of normal brain function? An overview of evidence from cognitive and behavioral tests in humans and animals. Am J Clin Nutr, 2005. 82(2): p. 281-95.
22. Salvati, S., et al., Polyunsaturated fatty acids and neurological diseases. Mini Rev Med Chem, 2006. 6(11): p. 1201-11.
23. Calderon, F. and H.Y. Kim, Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J Neurochem, 2004. 90(4): p. 979-88.
24. Kan, I., et al., Docosahexaenoic acid and arachidonic acid are fundamental supplements for the induction of neuronal differentiation. J Lipid Res, 2007. 48(3): p. 513-7.
25. Beltz, B.S., et al., Omega-3 fatty acids upregulate adult neurogenesis. Neurosci Lett, 2007. 415(2): p. 154-8.
26. McNamara, R.K. and S.E. Carlson, Role of omega-3 fatty acids in brain development and function: potential implications for the pathogenesis and prevention of psychopathology. Prostaglandins Leukot Essent Fatty Acids, 2006. 75(4-5): p. 329-49.
27. Khedr, E.M., et al., Neural maturation of breastfed and formula-fed infants. Acta Paediatr, 2004. 93(6): p. 734-8.
28. Auestad, N., et al., Visual, cognitive, and language assessments at 39 months: a follow-up study of children fed formulas containing long-chain polyunsaturated fatty acids to 1 year of age. Pediatrics, 2003. 112(3 Pt 1): p. e177-83.
29. Helland, I.B., et al., Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children's IQ at 4 years of age. Pediatrics, 2003. 111(1): p. e39-44.
30. Angelsen, N.K., et al., Breast feeding and cognitive development at age 1 and 5 years. Arch Dis Child, 2001. 85(3): p. 183-8.
31. Gustafsson, P.A., et al., Breastfeeding, very long polyunsaturated fatty acids (PUFA) and IQ at 6 1/2 years of age. Acta Paediatr, 2004. 93(10): p. 1280-7.
32. Willatts, P. and J.S. Forsyth, The role of long-chain polyunsaturated fatty acids in infant cognitive development. Prostaglandins Leukot Essent Fatty Acids, 2000. 63(1-2): p. 95-100.
33. Delion, S., et al., Age-related changes in phospholipid fatty acid composition and monoaminergic neurotransmission in the hippocampus of rats fed a balanced or an n-3 polyunsaturated fatty acid-deficient diet. J Lipid Res, 1997. 38(4): p. 680-9.
34. Favrelere, S., et al., Age-related changes in ethanolamine glycerophospholipid fatty acid levels in rat frontal cortex and hippocampus. Neurobiol Aging, 2000. 21(5): p. 653-60.
35. Soderberg, M., et al., Fatty acid composition of brain phospholipids in aging and in Alzheimer's disease. Lipids, 1991. 26(6): p. 421-5.
36. McNamara, R.K., et al., The aging human orbitofrontal cortex: Decreasing polyunsaturated fatty acid composition and associated increases in lipogenic gene expression and stearoyl-CoA desaturase activity. Prostaglandins Leukot Essent Fatty Acids, 2008.
37. Conquer, J.A., et al., Fatty acid analysis of blood plasma of patients with Alzheimer's disease, other types of dementia, and cognitive impairment. Lipids, 2000. 35(12): p. 1305-12.
38. Johnson, E.J. and E.J. Schaefer, Potential role of dietary n-3 fatty acids in the prevention of dementia and macular degeneration. Am J Clin Nutr, 2006. 83(6 Suppl): p. 1494S-1498S.
39. Salem, N., Jr., et al., Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids, 2001. 36(9): p. 945-59.
40. Calderon, F. and H.Y. Kim, Role of RXR in neurite outgrowth induced by docosahexaenoic acid. Prostaglandins Leukot Essent Fatty Acids, 2007. 77(5-6): p. 227-32.
41. de Urquiza, A.M., et al., Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science, 2000. 290(5499): p. 2140-4.
42. Sampath, H. and J.M. Ntambi, Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu Rev Nutr, 2005. 25: p. 317-40.
43. Sarsilmaz, M., et al., Potential role of dietary omega-3 essential fatty acids on some oxidant/antioxidant parameters in rats' corpus striatum. Prostaglandins Leukot Essent Fatty Acids, 2003. 69(4): p. 253-9.
44. Hashimoto, M., et al., Docosahexaenoic acid provides protection from impairment of learning ability in Alzheimer's disease model rats. J Neurochem, 2002. 81(5): p. 1084-91.
45. Alexander-North, L.S., et al., Polyunsaturated fatty acids increase lipid radical formation induced by oxidant stress in endothelial cells. J Lipid Res, 1994. 35(10): p. 1773-85.
46. Wagner, B.A., G.R. Buettner, and C.P. Burns, Free radical-mediated lipid peroxidation in cells: oxidizability is a function of cell lipid bis-allylic hydrogen content. Biochemistry, 1994. 33(15): p. 4449-53.
47. Lukiw, W.J., et al., A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest, 2005. 115(10): p. 2774-83.
48. Kim, H.Y., M. Akbar, and K.Y. Kim, Inhibition of neuronal apoptosis by polyunsaturated fatty acids. J Mol Neurosci, 2001. 16(2-3): p. 223-7; discussion 279-84.
49. Ross, B.M., J. Seguin, and L.E. Sieswerda, Omega-3 fatty acids as treatments for mental illness: which disorder and which fatty acid? Lipids Health Dis, 2007. 6: p. 21.
50. Bourre, J.M., Dietary omega-3 Fatty acids and psychiatry: mood, behaviour, stress, depression, dementia and aging. J Nutr Health Aging, 2005. 9(1): p. 31-8.
51. Sinclair, A.J., et al., Omega 3 fatty acids and the brain: review of studies in depression. Asia Pac J Clin Nutr, 2007. 16 Suppl 1: p. 391-7.
52. Freeman, M.P., et al., Omega-3 fatty acids: evidence basis for treatment and future research in psychiatry. J Clin Psychiatry, 2006. 67(12): p. 1954-67.
53. Marszalek, J.R. and H.F. Lodish, Docosahexaenoic acid, fatty acid-interacting proteins, and neuronal function: breastmilk and fish are good for you. Annu Rev Cell Dev Biol, 2005. 21: p. 633-57.
54. Kim, H.Y. and L. Edsall, The role of docosahexaenoic acid (22:6n-3) in neuronal signaling. Lipids, 1999. 34 Suppl: p. S249-50.
55. Bazan, N.G., Synaptic lipid signaling: significance of polyunsaturated fatty acids and platelet-activating factor. J Lipid Res, 2003. 44(12): p. 2221-33.
56. Teague, W.E., et al., Polyunsaturated lipids in membrane fusion events. Cell Mol Biol Lett, 2002. 7(2): p. 262-4.
57. Valentine, R.C. and D.L. Valentine, Omega-3 fatty acids in cellular membranes: a unified concept. Prog Lipid Res, 2004. 43(5): p. 383-402.
58. Bourre, J.M., et al., The effects of dietary alpha-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. J Nutr, 1989. 119(12): p. 1880-92.
59. Gerbi, A., et al., Effect of fish oil diet on fatty acid composition of phospholipids of brain membranes and on kinetic properties of Na+,K(+)-ATPase isoenzymes of weaned and adult rats. J Neurochem, 1994. 62(4): p. 1560-9.
60. Marszalek, J.R., et al., Acyl-CoA synthetase 2 overexpression enhances fatty acid internalization and neurite outgrowth. J Biol Chem, 2004. 279(23): p. 23882-91.
61. Ikemoto, A., et al., Effects of docosahexaenoic and arachidonic acids on the synthesis and distribution of aminophospholipids during neuronal differentiation of PC12 cells. Arch Biochem Biophys, 1999. 364(1): p. 67-74.
62. Marszalek, J.R., et al., Long-chain acyl-CoA synthetase 6 preferentially promotes DHA metabolism. J Biol Chem, 2005. 280(11): p. 10817-26.
63. Rapoport, S.I., In vivo fatty acid incorporation into brain phosholipids in relation to plasma availability, signal transduction and membrane remodeling. J Mol Neurosci, 2001. 16(2-3): p. 243-61; discussion 279-84.
64. Coleman, R.A. and D.P. Lee, Enzymes of triacylglycerol synthesis and their regulation. Prog Lipid Res, 2004. 43(2): p. 134-76.
65. Bursten, S.L., et al., Interleukin-1 rapidly stimulates lysophosphatidate acyltransferase and phosphatidate phosphohydrolase activities in human mesangial cells. J Biol Chem, 1991. 266(31): p. 20732-43.
66. Agarwal, A.K., et al., Functional characterization of human 1-acylglycerol-3-phosphate-O-acyltransferase isoform 9: cloning, tissue distribution, gene structure, and enzymatic activity. J Endocrinol, 2007. 193(3): p. 445-57.
67. Yamashita, A., et al., Topology of acyltransferase motifs and substrate specificity and accessibility in 1-acyl-sn-glycero-3-phosphate acyltransferase 1. Biochim Biophys Acta, 2007. 1771(9): p. 1202-15.
68. Lu, B., et al., Cloning and characterization of murine 1-acyl-sn-glycerol 3-phosphate acyltransferases and their regulation by PPARalpha in murine heart. Biochem J, 2005. 385(Pt 2): p. 469-77.
69. Vergnes, L., et al., Agpat6 deficiency causes subdermal lipodystrophy and resistance to obesity. J Lipid Res, 2006. 47(4): p. 745-54.
70. Ruan, H. and H.J. Pownall, Overexpression of 1-acyl-glycerol-3-phosphate acyltransferase-alpha enhances lipid storage in cellular models of adipose tissue and skeletal muscle. Diabetes, 2001. 50(2): p. 233-40.
71. Gale, S.E., et al., A regulatory role for 1-acylglycerol-3-phosphate-O-acyltransferase 2 in adipocyte differentiation. J Biol Chem, 2006. 281(16): p. 11082-9.
72. Agarwal, A.K., et al., AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet, 2002. 31(1): p. 21-3.
73. Simha, V. and A. Garg, Phenotypic heterogeneity in body fat distribution in patients with congenital generalized lipodystrophy caused by mutations in the AGPAT2 or seipin genes. J Clin Endocrinol Metab, 2003. 88(11): p. 5433-7.
74. Beigneux, A.P., et al., Agpat6--a novel lipid biosynthetic gene required for triacylglycerol production in mammary epithelium. J Lipid Res, 2006. 47(4): p. 734-44.
75. Agarwal, A.K., R.I. Barnes, and A. Garg, Functional characterization of human 1-acylglycerol-3-phosphate acyltransferase isoform 8: cloning, tissue distribution, gene structure, and enzymatic activity. Arch Biochem Biophys, 2006. 449(1-2): p. 64-76.
76. Hartmann, H., et al., Developmental regulation of presenilin-1 processing in the brain suggests a role in neuronal differentiation. J Biol Chem, 1997. 272(23): p. 14505-8.
77. Li, Y.P., et al., Beta-amyloid induces apoptosis in human-derived neurotypic SH-SY5Y cells. Brain Res, 1996. 738(2): p. 196-204.
78. Sheehan, J.P., et al., MPP+ induced apoptotic cell death in SH-SY5Y neuroblastoma cells: an electron microscope study. J Neurosci Res, 1997. 48(3): p. 226-37.
79. Abemayor, E. and N. Sidell, Human neuroblastoma cell lines as models for the in vitro study of neoplastic and neuronal cell differentiation. Environ Health Perspect, 1989. 80: p. 3-15.
80. Ross, R.A., B.A. Spengler, and J.L. Biedler, Coordinate morphological and biochemical interconversion of human neuroblastoma cells. J Natl Cancer Inst, 1983. 71(4): p. 741-7.
81. Constantinescu, R., et al., Neuronal differentiation and long-term culture of the human neuroblastoma line SH-SY5Y. J Neural Transm Suppl, 2007(72): p. 17-28.
82. Glomset, J.A., Role of docosahexaenoic acid in neuronal plasma membranes. Sci STKE, 2006. 2006(321): p. pe6.
83. Onuma, Y., et al., Selective incorporation of docosahexaenoic acid in rat brain. Biochim Biophys Acta, 1984. 793(1): p. 80-5.
84. Green, P. and E. Yavin, Elongation, desaturation, and esterification of essential fatty acids by fetal rat brain in vivo. J Lipid Res, 1993. 34(12): p. 2099-107.
85. Ye, G.M., et al., Cloning and characterization a novel human 1-acyl-sn-glycerol-3-phosphate acyltransferase gene AGPAT7. DNA Seq, 2005. 16(5): p. 386-90.
86. Sarkanen, J.R., et al., Cholesterol supports the retinoic acid-induced synaptic vesicle formation in differentiating human SH-SY5Y neuroblastoma cells. J Neurochem, 2007. 102(6): p. 1941-52.
87. Favreliere, S., et al., DHA-enriched phospholipid diets modulate age-related alterations in rat hippocampus. Neurobiol Aging, 2003. 24(2): p. 233-43.
88. Grynberg, A., et al., Eicosapentaenoic and docosahexaenoic acids in cultured rat ventricular myocytes and hypoxia-induced alterations of phospholipase-A activity. Mol Cell Biochem, 1992. 116(1-2): p. 75-8.
89. Moriguchi, T., et al., Effects of an n-3-deficient diet on brain, retina, and liver fatty acyl composition in artificially reared rats. J Lipid Res, 2004. 45(8): p. 1437-45.
90. DeMar, J.C., Jr., et al., Half-lives of docosahexaenoic acid in rat brain phospholipids are prolonged by 15 weeks of nutritional deprivation of n-3 polyunsaturated fatty acids. J Neurochem, 2004. 91(5): p. 1125-37.
91. Rao, J.S., et al., Dietary n-3 PUFA deprivation alters expression of enzymes of the arachidonic and docosahexaenoic acid cascades in rat frontal cortex. Mol Psychiatry, 2007. 12(2): p. 151-7.
92. Basselin, M., et al., Chronic lithium administration attenuates up-regulated brain arachidonic acid metabolism in a rat model of neuroinflammation. J Neurochem, 2007. 102(3): p. 761-72.
93. Rosenberger, T.A., et al., Rat brain arachidonic acid metabolism is increased by a 6-day intracerebral ventricular infusion of bacterial lipopolysaccharide. J Neurochem, 2004. 88(5): p. 1168-78.
94. Sinclair, A.J. and M.A. Crawford, The incorporation of linolenic aid and docosahexaenoic acid into liver and brain lipids of developing rats. FEBS Lett, 1972. 26(1): p. 127-9.
95. Araseki, M., et al., Lipid peroxidation of a human hepatoma cell line (HepG2) after incorporation of linoleic acid, arachidonic acid, and docosahexaenoic acid. Biosci Biotechnol Biochem, 2005. 69(3): p. 483-90.
96. Polozova, A. and N. Salem, Jr., Role of liver and plasma lipoproteins in selective transport of n-3 fatty acids to tissues: a comparative study of 14C-DHA and 3H-oleic acid tracers. J Mol Neurosci, 2007. 33(1): p. 56-66.
97. Dutta-Roy, A.K., Cellular uptake of long-chain fatty acids: role of membrane-associated fatty-acid-binding/transport proteins. Cell Mol Life Sci, 2000. 57(10): p. 1360-72.
98. Coburn, C.T., et al., Role of CD36 in membrane transport and utilization of long-chain fatty acids by different tissues. J Mol Neurosci, 2001. 16(2-3): p. 117-21; discussion 151-7.
99. Abumrad, N.A., et al., Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J Biol Chem, 1993. 268(24): p. 17665-8.
100. Pol, A., et al., Cholesterol and fatty acids regulate dynamic caveolin trafficking through the Golgi complex and between the cell surface and lipid bodies. Mol Biol Cell, 2005. 16(4): p. 2091-105.
101. Lobo, S. and D.A. Bernlohr, Fatty acid transport in adipocytes and the development of insulin resistance. Novartis Found Symp, 2007. 286: p. 113-21; discussion 121-6, 162-3, 196-203.
102. Granlund, L., et al., Effects of structural changes of fatty acids on lipid accumulation in adipocytes and primary hepatocytes. Biochim Biophys Acta, 2005. 1687(1-3): p. 23-30.
103. Tjonneland, A., et al., Adipose tissue fatty acids as biomarkers of dietary exposure in Danish men and women. Am J Clin Nutr, 1993. 57(5): p. 629-33.
104. Portolesi, R., B.C. Powell, and R.A. Gibson, Competition between 24:5n-3 and ALA for Delta 6 desaturase may limit the accumulation of DHA in HepG2 cell membranes. J Lipid Res, 2007. 48(7): p. 1592-8.
105. Delplanque, B. and B. Jacotot, Influence of environmental medium on fatty acid composition of human cells: leukocytes and fibroblasts. Lipids, 1987. 22(4): p. 241-9.
106. Voigt, A. and F. Zintl, Effects of retinoic acid on proliferation, apoptosis, cytotoxicity, migration, and invasion of neuroblastoma cells. Med Pediatr Oncol, 2003. 40(4): p. 205-13.
107. Linnala, A., V.P. Lehto, and I. Virtanen, Neuronal differentiation in SH-SY5Y human neuroblastoma cells induces synthesis and secretion of tenascin and upregulation of alpha(v) integrin receptors. J Neurosci Res, 1997. 49(1): p. 53-63.
108. Reynolds, L.M., C.F. Dalton, and G.P. Reynolds, Phospholipid fatty acids and neurotoxicity in human neuroblastoma SH-SY5Y cells. Neurosci Lett, 2001. 309(3): p. 193-6.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40242-
dc.description.abstract1-acyl-sn-glycerol-3-phosphate acyltransferase (AGPAT)又稱為 lysophosphatidic acid acyltransferase (LPAAT),是催化脂肪酸由acyl-CoA (通常為不飽和脂肪酸) 鍵結到1-acyl-sn-glycerol-3-phosphate的sn-2上產生phosphatidic acid (PA)的酵素。因此AGPAT在整個磷脂質及三酸甘油酯的生合成過程扮演其相當程度的角色。根據其酵素活性與序列的相似性得知大約有9種亞型 (isoforms),這些AGPAT都具有2到4個細胞嵌合區(transmembrane domains)和acyltransferases中高度保留的催化活性區(catalytic motif, NHX4D)以及受質結合區(substrate binding motif, EGTR)。Docosahexanoic acid (DHA, 22:6n-3),為一長鏈n-3不飽和脂肪酸,在腦及視網膜的磷脂質sn-2位置上含量比起身體其他組織高出許多。相關的研究也指出DHA能維持神經細胞的正常功能,但是我們仍然不知道為何DHA選擇性結合到這些組織磷脂質的sn-2位置上。以酵素作用看來,AGPAT在sn-2脂肪酸的酯化扮演重要角色,九種AGPAT isoforms在不同組織表現量有很大的差別,因此認為各種isoform可能具有受質特異性,對特定的脂肪酸或是LPA進行sn-2的acylation。在腦部AGPAT mRNA表現量最高是AGPAT4,因此我們推測AGPAT4可能與DHA在大腦的累積有關。
利用RT-qPCR的方式測得隨著年齡增長(胚胎、七天大、一個月大及十個月大),大鼠大腦中AGPAT4的mRNA表現量跟著降低,利用氣相層析分析法(Gas chromatography, GC) 發現其DHA的含量也相對跟著降低;另外,在DHA缺乏的大鼠腦部AGPAT4的表現,相較於控制組的表現量來的高。為了探討AGPAT4的功能,我們建立了含有大鼠AGPAT4 cDNA的表現質體並轉染到SH-SY5Y細胞,Western blot 及螢光免疫染色法可以看出AGPAT4的表現及其在細胞中之分佈。在轉染AGPAT4的細胞給予50μM的各種脂肪酸24小時,當給予DHA及α-linolenic acid (ALA, 18:3n-3)時,細胞中DHA及ALA相較於控制組分別高出3.0%及2.8%;但是當給予eicosapentaenoic acid (EPA)、 arachidonic acid (AA)、palmitoleic acid (PA, 16:1)和 miristic acid (MA, 14:0)細胞中AA、EPA、PA及MA含量則沒有明顯的改變。當分別給予10μM 及50μM DHA,轉染AGPAT4 cDNA 的細胞比只轉染載體的細胞多了1% 及 3%。用retinoic acid (RA) 及mitotic inhibitors分化SH-SY5Y成神經細胞, AGPAT4 mRNA表現量會隨著分化而增加,DHA的累積也有增加的趨勢,最高達1.76倍 (由2.7%提到至4.7%)。為了更進一步證明AGPAT4對於DHA在細胞膜累積的重要性,我們利用RNAi 干擾技術減少AGPAT4的表現,當給予50μM DHA時,累積在磷脂質的DHA比起對照組低了4-8%的含量。本實驗的結果顯示,AGPAT4在神經發育及DHA在神經細胞的累積扮演重要角色。
zh_TW
dc.description.abstract1-acyl-sn-glycerol-3-phosphate acyltransferases (AGPATs), also known as lysophophatidic acid acyltransferase (LPAAT), are involved in the transfer of fatty acid, mostly unsaturated, to the sn-2 carbon during de novo synthesis of glycerolipids, such as phospholipids and triacylglycerol. At least nine isoforms of AGPATs have been identified based on activity and/or sequence similarity. All of them have two conserved motifs, NHX4D and EGTR. It is well known that the sn-2 fatty acid of phospholipids of the frontal cortex, hippocampus and retina of human and most animals are rich in docosahexainoic aicd (DHA, 22:6n-3). Accumulating evidences showed that DHA is important for the functions of neurons. Since AGPAT is responsible for the esterification of sn-2 position of lysophosphatidic acid(LPA), there may have a tissue specific AGPAT that responsible for the accumulation of DHA in brain. Among all the AGPATs, the AGPAT4 mRNA is mostly expressed in brain. We therefore speculate that AGPAT4 may involve in accumulation of DHA in the brain.
To investigate the relationship of AGPAT4 on DHA accumulation in neurons, the expression levels of AGPAT4 mRNA and DHA content in rat brains were determined. Results showed that both AGPAT4 mRNA and DHA content in the brain are decreased with increasing of age. Moreover, the level of AGPAT4 mRNA of the DHA deficient rats was higher than that of the control rats. In order to investigate the function of AGPAT4, an expression plasmid containing rat AGPAT4 cDNA was constructed and transfected into SH-SY5Y cells. After transfection, the cells were given with a variety of fatty acids (FAs) for 24h and the FA composition in the cell was analyzed by gas chromatography (GC). Compared with control cells, SH-SY5Y cells transfected with AGPAT4 incorporated higher DHA and α-linolenic acid (ALA, 18:3n-3) but not eicosapentaenoic acid (EPA), arachidonic acid (AA), palmitoleic acid (16:1), and miristic acid (14:0) compared with that in cells transfected with vector. After incubating with 0-50μM of DHA for 24 hours, the incorporation of DHA in AGPAT4 transfected SH-SY5Y cells increased in a dose-dependent manner, and the variation between SH-SY5Y with or without AGPAT4 overexpression was gradually different. Moreover, we differentiated SH-SY5Y to a neuronal-like state using a combination of retinoic acid and mitotic inhibitors. Both of the expression level of Agpat4 and DHA incorporation increase during cell differentiation. Knockdown the AGPAT4 expression by specific siRNAs resulted in decreased DHA content of phospholipids in SH-SY5Y cell.
Taken together, this study showed that AGPAT4 may play a important function in DHA accumulation in neurons and in the SH-SY5Y differentiation.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:43:13Z (GMT). No. of bitstreams: 1
ntu-97-R95442003-1.pdf: 2310423 bytes, checksum: c17b0abbb3677f206c52d652ea5d5bf5 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents謝誌 iii
摘要 iv
Abstract vi
縮寫對照表 viii
第一章 緒論 1
第一節 文獻回顧 2
第二節 研究動機與實驗目的 12
第二章 實驗材料與方法 14
I. 動物實驗 15
第一節 動物飼養、組織取樣及處理 16
一、 實驗動物與飼養條件 16
二、 動物犧牲 16
第二節 大鼠腦組織基因mRNA表現量測定(一) 16
一、 腦組織總RNA抽取 16
二、 第一股cDNA的合成 17
三、 反轉錄酶-聚合酶連鎖反應 (Reverse Transcriptase- Polumerase Chain Reaction, RT-PCR) 17
四、 DNA洋菜膠體電泳 18
第三節 大鼠腦組織基因mRNA表現量測定(二) 19
一、 引子設計 19
二、 定量聚合酶連鎖反應 (Quantitative-Polymerase Chain Reaction, Q-PCR) 19
第四節 脂肪酸組成檢測分析 20
第五節 統計分析 21
II. 細胞實驗 22
第一節 細胞培養 23
第二節 製備含有大鼠AGPAT4/myc-His表現質體的人類神經細胞株SH-SY5Y 23
第三節 分析在大量表現AGPAT4的SH-SY5Y細胞中蛋白的表現 28
第四節 建構不表現myc-His蛋白的pcDNA3.1-AGPAT4 表現質體 33
第五節 分析不同脂肪酸在細胞中的堆積情形 34
第六節 RNA干擾knockdown AGPAT4 35
第三章 實驗結果 38
第四章 討論 44
第五章 圖表 55
第六章 參考文獻 67
dc.language.isozh-TW
dc.subjectSH-SY5Yzh_TW
dc.subjectAGPAT4zh_TW
dc.subject分化zh_TW
dc.subject神經細胞zh_TW
dc.subjectSH-SY5Yen
dc.subjectAGPAT4en
dc.subjectneuronen
dc.subjectdifferentiationen
dc.title大鼠腦組織及人類神經細胞株SH-SY5Y表現之1-acyl-sn-glycerol-3-phosphate acyltransferase的受質特性及年齡對其基因表現影響之探討zh_TW
dc.titleStudies on the substrate specificity and the effects of age on gene expression of 1-acyl-sn-glycerol-3-phosphate acyltransferase in rat brains and in SH-SY5Y cellsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃伯超(Po-Chao, Huang),吳文惠,蘇慧敏(Hui-Min, Su),盧志峰(Jyh-Feng, Lu)
dc.subject.keywordAGPAT4,SH-SY5Y,分化,神經細胞,zh_TW
dc.subject.keywordAGPAT4,SH-SY5Y,differentiation,neuron,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2008-08-01
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
2.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved