請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40228
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 顏溪成(Shi-Chern Yen) | |
dc.contributor.author | TZ -HAN LIN | en |
dc.contributor.author | 林子涵 | zh_TW |
dc.date.accessioned | 2021-06-14T16:42:59Z | - |
dc.date.available | 2010-08-08 | |
dc.date.copyright | 2008-08-08 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-30 | |
dc.identifier.citation | Cha, J. H., Kim, K. S., Choi, S., Yeon, S. H., Lee, H., Lee, C. S. and Shim, J. J., 'Size-controlled electrochemical synthesis of palladium nanoparticles using morpholinium ionic liquid', Korean Journal of Chemical Engineering 24, 1089 (2007).
Curtis, C., Rivkin, T., Miedaner, A., Alleman, J., Perkins, J., Smith, L. and Ginley, D., 'Metallizations by direct-write inkjet printing ', (2001). Dimitrakopoulos, C. D. and Malenfant, P. R. L., 'Organic thin film transistors for large area electronics', Adv Mater 14, 99 (2002). Greef, R., Peat, R., Peter, L.M., Pletcher, D., Robinson, J., 'Intrumental Methods in Electrochemistry', Ellis Horwood Ltd., Chichester, England, (1985). Hong, C. M. and Wagner, S., 'Inkjet printed copper source/drain metallization for amorphous silicon thin-film transistors', Ieee Electr Device L 21, 384 (2000). Im, S. H., Lee, Y. T., Wiley, B. and Xia, Y. N., 'Large-scale synthesis of silver nanocubes: The role of hcl in promoting cube perfection and monodispersity', Angew Chem Int Edit 44, 2154 (2005). Kawase, T., Shimoda, T., Newsome, C., Sirringhaus, H. and Friend, R. H., 'Inkjet printing of polymer thin film transistors', Thin Solid Films 438, 279 (2003). Kim, D., Jeong, S., Lee, S., Park, B. K. and Moon, J., 'Organic thin film transistor using silver electrodes by the ink-jet printing technology', Thin Solid Films 515, 7692 (2007). Le, H. P., 'Progress and trends in ink-jet printing technology', Journal of Imaging Science and Technology 42, 49 (1998). Lee, H. H., Chou, K. S. and Huang, K. C., 'Inkjet printing of nanosized silver colloids', Nanotechnology 16, 2436 (2005). Liu, Z. C., Su, Y. and Varahramyan, K., 'Inkjet-printed silver conductors using silver nitrate ink and their electrical contacts with conducting polymers', Thin Solid Films 478, 275 (2005). Okitsu, K., Mizukoshi, Y., Bandow, H., Maeda, Y., Yamamoto, T. and Nagata, Y., 'Formation of noble metal particles by ultrasonic irradiation', Ultrasonics Sonochemistry 3, S249 (1996). Reetz, M. T. and Helbig, W., 'Size-selective synthesis of nanostructured transition-metal clusters', J Am Chem Soc 116, 7401 (1994). Reetz, M. T., Winter, M., Breinbauer, R., Thurn-Albrecht, T. and Vogel, W., 'Size-selective electrochemical preparation of surfactant-stabilized pd-, ni- and pt/pd colloids', Chem-Eur J 7, 1084 (2001). Silvert, P. Y., HerreraUrbina, R., Duvauchelle, N., Vijayakrishnan, V. and Elhsissen, K. T., 'Preparation of colloidal silver dispersions by the polyol process .1. Synthesis and characterization', J Mater Chem 6, 573 (1996). Silvert, P. Y., HerreraUrbina, R. and TekaiaElhsissen, K., 'Preparation of colloidal silver dispersions by the polyol process .2. Mechanism of particle formation', J Mater Chem 7, 293 (1997). Silvert, P. Y., Vijayakrishnan, V., Vibert, P., HerreraUrbina, R. and Elhsissen, K. T., 'Synthesis and characterization of nanoscale ag-pd alloy particles', Nanostruct Mater 7, 611 (1996). Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W. and Woo, E. P., 'High-resolution inkjet printing of all-polymer transistor circuits', Science 290, 2123 (2000). Szczech, J. B., Megaridis, C. M., Gamota, D. R. and Zhang, J., 'Fine-line conductor manufacturing using drop-on-demand pzt printing technology', Ieee T Electron Pa M 25, 26 (2002). Wada, Y., Kuramoto, H., Anand, J., Kitamura, T., Sakata, T., Mori, H. and Yanagida, S., 'Microwave-assisted size control of cds nanocrystallites', J Mater Chem 11, 1936 (2001). Wada, Y., Kuramoto, H., Sakata, T., Mori, H., Sumida, T., Kitamura, T. and Yanagida, S., 'Preparation of nano-sized nickel metal particles by microwave irradiation', Chem Lett, 607 (1999). Wang, J. Z., Zheng, Z. H., Li, H. W., Huck, W. T. S. and Sirringhaus, H., 'Dewetting of conducting polymer inkjet droplets on patterned surfaces', Nat Mater 3, 171 (2004). Wiley, B., Sun, Y. G., Chen, J. Y., Cang, H., Li, Z. Y., Li, X. D. and Xia, Y. N., 'Shape-controlled synthesis of silver and gold nanostructures', Mrs Bull 30, 356 (2005). Xue, F. L., Liu, Z. C., Su, Y. and Varahramyan, K., 'Inkjet printed silver source/drain electrodes for low-cost polymer thin film transistors', Microelectron Eng 83, 298 (2006). Yang, S. H., Zhang, X. M., Zhang, T. J., Wang, K. G. and Zhu, Y. B., 'Tio2 nano-powders prepared by means of microwave radiation', Rare Metal Mat Eng 29, 354 (2000). Yin, H. B., Yamamoto, T., Wada, Y. and Yanagida, S., 'Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation', Mater Chem Phys 83, 66 (2004). Yu, J. C., Yu, J. G., Ho, W. K. and Zhang, L. Z., 'Preparation of highly photocatalytic active nano-sized tio2 particles via ultrasonic irradiation', Chemical Communications, 1942 (2001). Zhang, Z. T., Zhao, B. and Hu, L. M., 'Pvp protective mechanism of ultrafine silver powder synthesized by chemical reduction processes', J Solid State Chem 121, 105 (1996). 柯以侃, 儀器分析, (1996). 殷孟雲, 噴墨印表機設計原理, (1998). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40228 | - |
dc.description.abstract | 奈米粒子的大小影響著觸媒和電子元件的特性,因此各種製備不同大小奈米粒子的可靠方法,一直持續被開發。噴墨列印金屬化製程提供了一種無需光罩的製程,相較於傳統的技術,直接噴墨列印能夠減少成本和降低製程的複雜性。本實驗期望利用電化學合成法,製備不同粒徑的奈米銀,並將製備的奈米銀配合發展成熟之無電電鍍技術,以噴墨列印方式在低溫之下直接形成銀導線。
首先探討過電位大小對奈米粒銀粒徑的影響,接著探討在室溫之下,不同的合成方法對反應速率的影響。電化學合成奈米銀系統中,在氫氣還原電位之前,過電位越大奈米粒徑越小,最小粒徑可控制在5.4 nm。電化學合成系統中的反應速率也遠快於氧化還原法,反應時間在第120分鐘時,電化學合成系統的濃度為氧化還原的1.5倍:若以電化學法配合氧化還原法,反應時間在第120分鐘時,濃度為單純氧化還原法的4.5倍。以自行製備的奈米銀溶液作為金屬化導線的墨水,重複噴列十次以上可以得到連續的導線,銀導線經過兩次無電鍍銀之後,厚度約為1000 nm,最小的電阻率為19.6 μΩ•cm。 | zh_TW |
dc.description.abstract | Particle size strongly influences the catalytic and electronic properties of materials, therefore the development of reliable methods for the nano-size preparation has been in progress. Metallization by ink-jet printing offers a maskless alternative method to conventional process. Direct ink jet printing can provide low cost, and reduction in process complexity. In this study, we try to synthesize nanosilver particles by electrochemical methods and then ink-jet printing, combined with nanosilver preparation and electroless plating, has been developed and directly writes silver lines at low temperature.
First of all, we have investigated the effect of overpotential in electrodepostion on the particle size, and the effects of electrodeposition on reaction rate in various reaction conditions. In the electrolytic system, the larger overpotential we applied, the smaller particle size we acquired as long as the overpotential is not beyond the potential of reduction of hydrogen. The smallest particle size obtained is 5.4 nm. The production rate of nanosilver particles by electrochemical method has also been found much faster than chemical reduction. The concentration of nanosilver particles by electrodeposition with chemical reduction is four and half times of that by chemical reduction. After ten times of printing we could acquire continuous lines by the formulated nanosilver ink. The silver lines which is thickened by silver electroless plating tiwce is about one thousand nanometers and its resistivity is 19.6 μΩ•cm. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T16:42:59Z (GMT). No. of bitstreams: 1 ntu-97-R95524004-1.pdf: 1679562 bytes, checksum: a59e298a922d3aec27a74555d4eca4f9 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 摘要 I
Abstract II 目錄 III 圖表目錄 V 第1章 緒論 1 1-1噴墨列印技術簡介 1 1-2金屬化製程簡介 3 1-3奈米粒子簡介 4 1-4 噴墨列印技術應用 6 1-5研究動機 7 第2章 文獻回顧 13 2-1奈米粒子合成 13 (A)氧化還原法 13 (B)微波化學法 14 (C)電化學法 15 (D)超音波還原法 15 2-2金屬化製程 16 2-3噴印TFT製程 18 第3章 理論分析與相關技術 27 3-1 無電鍍原理 27 3-2 電極動力學與極化曲線 29 3-3 三電極式電化學量測系統 31 3-4 電化學法製備奈米銀 32 3-5 氧化還原法製備奈米銀 33 3-6場效電晶體工作原理 35 第4章 實驗設備與方法 42 4-1 實驗項目與程序 42 4-1-1電極反應動力學量測部分 42 4-1-2 奈米銀金屬溶液的製備 43 4-1-3奈米銀粒徑分析 44 4-1-4奈米銀的純化 44 4-1-5銀濃度量測(原子光譜吸收儀) 45 4-1-6奈米銀合成反應速率(紫外光可見光吸收光譜法) 45 4-1-7奈米銀燒結溫度對電阻的影響 47 4-1-8奈米銀表面分析(SEM表面型態分析) 47 4-1-9金屬化導線製作與分析 47 4-1-10電晶體的製作 49 4-2 實驗裝置及耗材 50 4-2-1設備與儀器 50 4-2-2 藥品與耗材 52 第5章 實驗結果與討論 58 5-1電極反應動力學 58 5-2 電化學法合成奈米銀 59 5-2-1電流密度的影響 59 5-2-2 PVP用量對粒徑的影響 61 5-2-3電化學法對反應速率的影響 62 5-3 奈米銀墨水分析 64 5-3-1 X-ray繞射儀分析 64 5-3-2 UV-Visible分析 64 5-3-3 燒結溫度對電阻的影響 64 5-3-4 奈米銀濃度量測 66 5-4 金屬化導線製程 66 5-4-1 無電鍍銀增厚 67 5-4-2 電鍍銅增厚 68 第6章 結論 98 6-1 電化學合成對奈米銀粒徑探討 98 6-2 奈米銀分析 98 符號說明 100 參考文獻 102 Table 1 1 製備奈米粉末的兩種主要方法 8 Table 2 1 Formation of metal-organic ink and characteristics of printed conductor patterns 21 Table 4 1 Parameters of electrochemical synthesis. 53 Table 4 2 Solution for preparing nano Ag by reduction. 53 Table 4 3 Formulation of electroless plating solution. 53 Table 5 1 Particle size distribution with different current density.(distance between electrodes = 5 mm) 70 Table 5 2 Particle size distribution with different current density and with heating 1hr. (distance between electrodes = 5 mm) 70 Table 5 3 The concentration versus deposition time for various deposition methods. 71 Table 5 4 Temperature vs resistance (Ω). 71 Table 5 5 Formulation of electroless plating. 72 Table 5 6 Formulation of electroplating. 72 Fig. 1 1 Ink-jet technology. (Le, 1998) 9 Fig. 1 2 (a) Binary-deflection system;(b) Multiple-deflection system.(Le, 1998) 10 Fig. 1 3 Drop formation process of a thermal ink-jet system.(Le, 1998) 11 Fig. 1 4 (a) Drop formation process of a PZT ink-jet system;(b) a bend –mode PZT inkjet.(殷孟雲, 1991) 12 Fig. 2 1 TEM images of a mixture of twinned seeds (b)(with a heterogeneous contrast under TEM) and single-crystalline seeds (c)(with a homogeneous contrast). Image (c) is the result of 0.06 mM chloride being added to the same synthesis and a second round of nucleation taking place (Wiley et al., 2005) 22 Fig. 2 2 Schematic representation of electrochemical formation of surfactant stabilied transision metal colloids. (Reetz et al., 1994) 23 Fig. 2 3 Effect of the current density on Pd particle size. (Cha et al., 2007) 23 Fig. 2 4 (a) Optimized jetting condition and a trace which is capable of fabricating (b) non-optimized jetting condition and an unacceptable trace it fabricates. (Szczech et al., 2002) 24 Fig. 2 5 Different Ag line width by inkjet printing nanosilver. (Lee et al., 2005) 24 Fig. 2 6 Two silver electrode lines as source and drain by inkjet printing nanosilver. (Kim et al., 2007). 25 Fig. 2 7 Schematic diagram of high-resolution IJP onto a prepatterned substrate. (Sirringhaus et al., 2000) 25 Fig. 2 8 (a)Fabricate FDTS SAM (b) PEDOT/PSS water solution is ink-jetted on top of FDTS SAM for observing dewetting phenomenon. (Wang et al., 2004) 26 Fig. 3 1 The schematic representation of Tafel plot (solid lines) and Bulter-Volmer kinetics (dash lines). 39 Fig. 3 2 The schematic representation for the relative positions of Luggin capillary, working electrode and reference electrode, respectively. 39 Fig. 3 3 FTIR spectra of PVP and silver powder. 40 Fig. 3 4 Three different working region under different VGS and VDS. 40 Fig. 3 5 Top-Gate TFT structure. 41 Fig. 3 6 Bottom-Gate TFT structure of. 41 Fig. 3 7 Development of semiconductor materials (Dimitrakopoulos et al., 2002) 41 Fig. 4 1 Flow chart of preparing nano Ag by reduction. 54 Fig. 4 2 Flow chart of centrifugation. 55 Fig. 4 3 The schematic diagram of a modified ink-jet printer. 56 Fig. 4 4 The experimental setup for electrochemical measurements. 56 Fig. 4 5 The experimental setup for electrochemical synthesis. 57 Fig. 5 1 Kinetic parameter A vs overpotential(-η) for nanosilver electrodeposition. 73 Fig. 5 2 Particle size distribution at applied current density 0.753 mA/cm2. 73 Fig. 5 3 Particle size distribution at applied current density 1.1665 mA/cm2. 74 Fig. 5 4 Particle size distribution at applied current density 3.125 mA/cm2. 74 Fig. 5 5 Particle size distribution at applied current density 5 mA/cm2. 75 Fig. 5 6 Particle size distribution at applied current density 15 mA/cm2. 75 Fig. 5 7 Particle diameter vs current density by electrochemical method. 76 Fig. 5 8 Particle size distribution at 0.753 mA/cm2 and heating 1 hr at 120 ℃. 76 Fig. 5 9 Particle size distribution at 1.1665 mA/cm2 and heating 1 hr at 120 ℃. 77 Fig. 5 10 Particle size distribution at 3.125 mA/cm2 and heating 1 hr at 120 ℃. 77 Fig. 5 11 Particle size distribution at 5 mA/cm2 and heating 1 hr at 120 ℃. 78 Fig. 5 12 Particle size distribution at 15 mA/cm2 and heating 1 hr at 120 ℃. 78 Fig. 5 13 Particle size distribution by chemical reaction. 79 Fig. 5 14 Particle diameter vs current density (heating 1 hr after electrodeposition). 79 Fig. 5 15 Particle size VS current density with and without heating after electrodeposition. 80 Fig. 5 16 Particle size distribution at 5 mA/cm2 for PVP =0.133 g/mL. 80 Fig. 5 17 Particle size distribution at 5 mA/cm2 for PVP =0.093 g/mL. 81 Fig. 5 18 Particle size distribution at 5 mA/cm2 for PVP =0.053 g/mL. 81 Fig. 5 19 Particle size distribution at 5 mA/cm2 for PVP =0.013 g/mL. 82 Fig. 5 20 Ag particle size vs PVP soncentration. 82 Fig. 5 21 Calibration of uv-visible. 83 Fig. 5 22 Ag concentration vs reaction time for various deposition method. 84 Fig. 5 23 Particle size distribution by chemical reduction at 25 ℃. 85 Fig. 5 24 Particle size distribution by chemical reduction with ultrasonication at 25℃. 85 Fig. 5 25 Particle size distribution by electrodeposition at 5 mA/cm2 with ultrasonication in aqueous solution at 25 ℃. 86 Fig. 5 26 XRD patterns of nanoAg powder. 86 Fig. 5 27 Absorption of UV-Visible. 87 Fig. 5 28 Temperature of sintering vs resistance(Ω). 88 Fig. 5 29 SEM images of nanoAg: (a)sintering at 100 ℃;(b) sintering at 200 ℃;(c) sintering at 300 ℃;(d) sintering at 400 ℃. 89 Fig. 5 30 TGA analysis of dried nanoAg powder. 90 Fig. 5 31 EDX analysis for the Nano Ag after different temperature sintering:(a)100 ℃;(b)200 ℃;(c)300 ℃;(d) 400 ℃. 91 Fig. 5 32 Calibration of Atomic Absorption. 92 Fig. 5 33 OM images of printing less than five times. 92 Fig. 5 34 OM images of two silver lines which could serve as source and drain electrodes in TFT. 93 Fig. 5 35 OM images of widths of two lines and the channel. 94 Fig. 5 36 Times of printing vs resistance. 94 Fig. 5 37 The resistance of metallic line. 95 Fig. 5 38 Images of width of lines after electroless plating twice.(600μm) 95 Fig. 5 39 AFM images of heights of silver lines. 96 Fig. 5 40 OM images of two silver lines covered with Cu electrodeposition layer.. 96 Fig. 5 41 OM images of widths of two lines and the channel. 97 Fig. 5 42 Copper and silver peel from base after electroplating copper. 97 | |
dc.language.iso | zh-TW | |
dc.title | 以噴墨列印方法製作金屬化導線研究 | zh_TW |
dc.title | The study of metallization by ink jet printing | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳永富(Yung-Fu Wu),黃瑞雄(Jui-Hsiung Huang) | |
dc.subject.keyword | 奈米銀,噴墨列印,無電鍍, | zh_TW |
dc.subject.keyword | nanoAg,ink-jet printing,electroless plating, | en |
dc.relation.page | 105 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-08-01 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。