請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40227完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱錦洲,張建成 | |
| dc.contributor.author | Chun-Wei Chen | en |
| dc.contributor.author | 陳俊為 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:42:59Z | - |
| dc.date.available | 2009-09-02 | |
| dc.date.copyright | 2008-09-02 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-30 | |
| dc.identifier.citation | 1. Chang, C. C. (1992). Potential flow and forces for incompressible viscous flow. Proc. R. Soc. Lond. A437: 517-525.
2. Dickinson, M. H. and Götz, K. G. (1993). Unsteady aerodynamic performance of model wings at low Reynolds numbers. J. Exp. Biol. 174, 45-64. 3. Dickinson, M. H. (1994). The effects of wing rotation on unsteady aerodynamic performance at low Reynolds numbers. J. Exp. Biol. 192, 179-206. 4. Dickinson, M. H. and Götz, K. G. (1996). The wake dynamics and flight forces of the fruit fly drosophila melanofaster. J. Exp. Biol. 199, 2085-2104. 5. Dickinson, M. H., Lehmann, F. O. and Sane, S. P. (1999). Wing rotation and the aerodynamic basis of insect flight. Science 284, 1954-1960. 6. Dragos Viieru1, Jian Tang etc. (2006). Flapping and Flexible Wing Aerodynamics of Low Reynolds Number Flight Vehicles. 44th AIAA Aerospace Sciences Meeting & Exhibit, AIAA Paper 2006-503, Reno, NV, January 9-12. 7. Edwards, R. H. and Cheng, H. K. (1982). The separation vortex in the Weis-Fogh circulation-generation mechanism. J. Fluid Mech. 120, 463-473. 8. Ellington, C. P. (1984d). The aerodynamics of hovering insect flight. IV. Aerodynamic mechanisms. Phil. Trans. R. Soc. Lond. B 305, 79-113. 9. Ellington, C. P. , Van den Berg, C. , Willmott, A. P. and Thomas, A. I. R. (1996). Leading-edge vortices in insect flight. Nature 384, 626-630. 10. Ellington, C. P. (1999). The novel aerodynamics of insect flight: applications to micro- air vehicles. J. Exp. Biol. 202, 3439-3448. 11. Graham K. Taylor, Robert L. Nudds, Adrian L. R. Thomas. (2003). Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature 425, 707–711 12. KEUTHE, A. M. AND CHOW, C. (1986). Foundations of Aerodynamics. New York: John Wiley. 13. Lighthill, M. J. (1973). On the Weis-Fogh mechanism of lift generation. J. Fluid. Mech. 60, 1-17. 14. Liu, H., Ellington, C. P., Kawachi, K., VandenBerg, C. and Willmott, A.P. (1998). A computational fluid dynamic study of hawkmoth hovering. J.Exp. Biol. 201, 461–477. 15. Lehmann, F. O., Sane, S. P. and Dickinson, M. H. (2005). The aerodynamic effects of wing-wing interaction in flapping insect wings. J. Exp. Biol. 208, 3075-3092. 16. Maxworthy, T. (1979). Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part I. Dynamics of the ‘fling.’ J. Fluid. Mech. 93, 47-63. 17. Miller, L. A. and Peskin, C. S. (2004). When vortices stick: an aerodynamic transition in tiny insect flight. J. Exp. Biol. 207, 3073-3088. 18. Miller, L. A. and Peskin, C. S. (2005). A computational fluid dynamics of ‘clap and fling’in the smallest insects. J. Exp. Biol. 208, 195-212. 19. Spedding, G. R. and Maxworthy, T. (1986). The generation of circulation and lift in a rigid two-dimensional fling. J. Fluid. Mech. 165, 247-272. 20. Sun, M. and Hamdani, H. (2001). High-lift generation by an airfoil performing unsteady motion at low Reynolds number. Acta Mech. Sinica 17, 97–144. 21. Sun, M. and Tang, J. (2002a). Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J. Exp. Biol. 205, 55-70. 22. Sun, M. and Tang, J. (2002b). Lift and power requirements of hovering flight in Drosophila. J. Exp. Biol. 205, 2413-2427. 23. Sun, M. and Tang, J. (2002). Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J. Exp. Biol. 205, 55–70. 24. Sun, M. and Lang, S.L. (2004). A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering. J. Exp. Biol. 207: 1887-1901. 25. Sane, S. and Dickinson, M. H. (2002). The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J. Exp. Biol. 205, 1087-1096. 26. Weis-Fogh, T. (1973). Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Exp. Biol. 59, 169-230. 27. Walker, J. A. (2002). Rotational lift: Something different or more of the same? J. Exp. Biol. 205, 3783 -3792. 28. Wang, Z. J. (2000a). Two dimensional mechanism of hovering. Phys. Rev. Lett. 85, 2216-2219. 29. Wang, Z. J. (2000b). 2D Mechanism of hovering. Phys. Rev. Lett. 85, 2216-2219. 30. Wang, Z. J., Birch, J. M. and Dickinson, M. H. (2004). Unsteady forces and flows in low Reynolds number hovering flight: two dimensional computation vs robotic wing experiments. J. Exp. Biol. 207, 449-460. 31. ZHAO Pan feng , YANG Ji ming , etc. (2005). Visualization of vortex field of 2D flapping wing motion. Journal of Unervisity of Science and Technology of China. Vol . 35 , No. 4, Aug. 32.謝政達(指導教授:朱錦洲). 2004. “運用PIV與PTV量測技術於單一渦漩生成之研究”,國立台灣大學應用力學所碩士論文 33.薛嘉賢(指導教授:王安邦). 2002. “仿昆蟲拍翅飛行載具之轉翅時機實驗研究”,國立台灣大學應用力學所碩士論文 34.黃啟銘(指導教授:朱錦洲). 2004. “仿生撲翼受力與流場量測”,國立台灣大學應用力學所碩士論文. 35.蘇效賢(指導教授:朱錦洲). 2005. “仿生懸停下撲翼機構之流場與受力量測”, 國立台灣大學應用力學所碩士論文. 36.蔡長志(指導教授:朱錦洲). 2006. “仿生撲翼之二維流場與受力量測”, 國立台灣大學應用力學所碩士論文. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40227 | - |
| dc.description.abstract | 本實驗討論Weis-Fogh機制,也就是雙翼合攏-張開運動在兩種週期性運動模式下翼與翼之間受力與流場的影響:雙翼在張開過程具有移動速度與雙翼張開不具有移動速度的兩個運動在升力係數的表現,以追求高升力、低阻力、平移過程的穩定升力,吾人實驗參數的雷諾數約8500,Strouhal number 為 1.71、2.28與2.85,利用後緣為轉動軸心進行二維合攏-張開機制的高升力驗證。
由實驗結果指出,合攏-張開機制確實具有高升力,在Strouhal number 為 2.85,雙翼轉動與移動同時發生的合攏-張開機制,產生的升力係數為單翼轉動與移動同時發生的1.5倍。在張開機制結束後才移動產生的平均升力係數,具有良好的,而邊轉邊走的運動在打開機制結束後的平移過程無新的升力係數峰值,並且平移過程升力係數表現不佳。 吾人使用數位視訊攝錄影機與電子耦合攝影機即時拍攝翼板周圍的流場,並利用粒子影像測速儀軟體分析兩種雙翼合攏-張開運動下,流體運動的渦度場與速度場。結果顯示在第二週期雙翼個別張開同時移動產生尾跡捕捉的流場,雙翼同向靠近時,前緣的渦漩接觸到後一起向翼板下方流動,並且在翼板上方形成巨大的前緣渦,雙翼做合攏的動作會破壞前緣渦,並在兩翼板間產生新的渦漩,雙翼做張開的動作會將原先被破壞的渦漩重新組成新的渦漩流入兩翼板間,並且在翼後緣產生後緣渦漩,彼此接觸後向上流入,並與因兩翼板產生新的前緣渦而下沉的渦漩會合後,流向翼板表面並沿著翼板邊界層到翼板前緣下方形成渦漩。兩翼分離過程增加後緣渦的大小,並產生新的前緣渦,所以在兩翼上方會出現複雜的渦漩。 | zh_TW |
| dc.description.abstract | The research discusses the Clap-Fling mechanism for the wing-wing interaction of force and flow field at the two kinds of kinematic motion during periodic motion: the wings have translational velocity during fling mechanism and compare with no translational velocity ones. I use Reynolds number and Strouhal number to define the experiment parameters. I measure lift and drag coefficient as functions of non-dimensional time per wing for a range of Strouhal numbers between 1.71 and 2.85 at Reynolds number 8540.
I also use DV and CCD to capture the instantaneous streamlines around each wing and then use PIV software flow manager to analysis the vortices and velocity field for this two kinds Clap-Fling motion. My results verify there are two pair vortices between wings during Clap-Fling mechanism and also confirm that Clap-Fling has high lift mechanism. At Strouhal number 2.85, lift coefficient has better enhancement for fling mechanism compare with translational velocity. For the case that translational velocity after fling mechanism at Strouhal number 2.85, lift coefficient has better average lift coefficient during translation. For the Clap-Fling that fling mechanism with translational velocity, lift coefficient enhancement are 50% higher then one wing for Strouhal number 2.85. For the Clap-Fling two different motions, lift coefficient enhancement of fling with translational velocity are also 50% higher then translational velocity after fling for Strouhal number 2.85. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:42:59Z (GMT). No. of bitstreams: 1 ntu-97-R95543047-1.pdf: 8887185 bytes, checksum: 14a4185c8b01da66f70675937fda5405 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 誌謝 I
SUMMARY II 摘要 III 目錄 IV 圖目錄 VII 第一章 導論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與目的 5 第二章 實驗設備與實驗方法 6 2.1 實驗設備 6 2.1.1 實驗水槽 6 2.1.2 流場運動模擬控制系統 6 2.1.2.1 伺服馬達 6 2.1.2.2 滑軌 6 2.1.3 訊號量測裝置 7 2.1.3.1 力量感測負荷計 7 2.1.3.2 應變規 7 2.1.3.3 全橋電路電壓輸出 7 2.1.3.4 力感測器校正 8 2.1.3.5 轉動角度感測器校正 8 2.1.3.6 邊界平板 8 2.1.4滑軌位移量測裝置 9 2.1.5 電壓訊號擷取裝置 9 2.1.5.1 力感測器的電壓擷取裝置 9 2.1.5.2 角度感測器電壓擷取裝置 9 2.1.6 流場量測系統 10 2.1.6.1二極體連續雷射(NEWPORT 1W) 10 2.1.6.2氬離子連續雷射(Spectra-Physics Argon Ion Laser) 10 2.1.6.3電子耦合攝影機CCD(Charge-couple device) 10 2.1.6.4數位視訊攝錄影機DV(JVC) 10 2.1.6.5流場顯影粒子(PSP-50) 11 2.1.6.6影像擷取卡(EPIX)及軟體(XCAP) 11 2.2 實驗方法 11 2.2.1 運動模擬設定 11 2.2.2 實驗步驟 11 2.2.2.1 升阻力量測程序 11 2.2.2.2 流場量測程序 12 2.2.2.3 滑軌位移量測程序 13 第三章 理論與實驗分析基礎 15 3.1 動態比例(DYNAMIC SCALING) 15 3.1.1 雷諾數(Reynolds number) 15 3.1.2 Strouhal number 15 3.1.3 約化頻率(Reduced frequency) 16 3.1.5 旋轉升力(Rotational force) 17 3.1.6 慣性矩/轉動慣量(Moment of inertia) 17 3.1.7 展弦比(Aspect ratio) 17 3.2 旋轉元素理論/葉片理論(BLADE-ELEMENT THEORY) 18 3.3 渦流理論(VORTEX THEORY) 19 3.3.1 前緣渦(Leading-edge vortices) 19 3.3.2 拍動起始階段快速啟動 19 3.3.3 拍動結束階段快速翻轉(Pitching-up rotation) 20 3.4 力係數 21 3.4.1 升力係數 21 3.4.2 阻力係數 22 3.5 平均升力係數(MEAN LIFT COEFFICIENT) 22 3.5.1移動升力係數 22 3.6 打開環流(FLING CIRCULATION) 23 3.6.1 雷諾數 23 第四章 實驗結果與討論 25 4.1 流場雷諾數估算 25 4.2 流場STROUHAL NUMBER估算 25 4.3 受力量測 27 4.3.1單翼原地轉動升阻力 27 4.3.1.1無因次轉動時間升力係數 29 4.3.1.2 無因次轉動阻力係數 29 4.3.2 雙翼原地合攏-張開升阻力 30 4.3.2.1 無因次時間分析升力係數 31 4.3.2.2 無因次時間分析阻力係數 34 4.3.3 張開同時移動-升阻力係數 37 4.3.3.1 轉動角度曲線與無因次轉動角度曲線 39 4.3.3.2 無因次化時間升力係數 40 4.3.3.4 不同攻角升力係數 48 4.3.4張開結束後分離-升阻力係數 49 4.3.4.1 轉動角度曲線與無因次轉動角度曲線 50 4.3.4.2 無因次化時間升力係數 51 4.3.4.3 無因次化時間阻力係數 58 4.3.4.4 不同攻角升力係數 62 圖4-48 張開結束後移動-不同攻角升力係數 63 4.3.4.5 不同攻角阻力係數 63 圖4-49 張開結束後移動-不同攻角阻力係數 63 4.3.5 不同拍撲模式無因次時間分析升力係數 64 4.3.6不同拍撲模式無因次時間分析阻力係數 64 圖4-50 張開同時移動-兩週期力係數 64 4.3.7 與Miller比較Fling的升力係數 65 圖4-52 張開結束後才移動-MILLER 65 4.3.8 與Dickinson比較雙翼Clap and fling升力係數增量 66 4.4 流場量測 66 4.4.1 雙翼撲拍轉完再走流場 66 4.4.2 與Maxworthy比較轉完再走Fling流場 68 第五章 結論與未來展望 70 5.1 結論 70 5.2 未來展望 71 參考文獻 72 | |
| dc.language.iso | zh-TW | |
| dc.subject | 史特拉數 | zh_TW |
| dc.subject | 平均升力係數 | zh_TW |
| dc.subject | 翅耦合 | zh_TW |
| dc.subject | 合攏-張開 | zh_TW |
| dc.subject | 渦 | zh_TW |
| dc.subject | Strouhal number | en |
| dc.subject | vortice | en |
| dc.subject | average lift coefficient | en |
| dc.subject | wing-wing interaction | en |
| dc.subject | Clap-Fling | en |
| dc.title | 仿生合攏-張開之雙翼受力與流場量測 | zh_TW |
| dc.title | Measurement of Forces and Flow Fields for Biomimetic Clap-Fling Wings | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王繼宗,郭光輝,余永亮 | |
| dc.subject.keyword | 合攏-張開,史特拉數,翅耦合,平均升力係數,渦, | zh_TW |
| dc.subject.keyword | Clap-Fling,Strouhal number,wing-wing interaction,average lift coefficient,vortice, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-08-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 8.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
