請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40217
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭淑芬 | |
dc.contributor.author | Wen-Chao Lee | en |
dc.contributor.author | 李文超 | zh_TW |
dc.date.accessioned | 2021-06-14T16:42:49Z | - |
dc.date.available | 2013-08-14 | |
dc.date.copyright | 2008-08-14 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-31 | |
dc.identifier.citation | 1. Y. Ono, Catal. Today, 2003, 81, 3.
2. G. A. Mills, H. Heinemann, T. H. Milliken, and A. G. Oblad, Ind. Eng. Chem., 1953, 45, 134. 3. G. C. Bond, Heterogeneous Catalysis: Principles and Applications, 2nd ed., Oxford, 1987, Chapter 9, p. 111. 4. A. Corma, J. M. Serra, A. Chica, Catalysis Today, 2003, 81, 495. 5. M. Hino, K. Arata, J. Am. Chem. Soc., 1979, 101, 6439. 6. L. P. Hammett, A.J. Deyrup, J. Am. Chem. Soc., 1932, 54, 2721. 7. M. Hino, K. Arata, J. Chem. Soc. Chem. Commun., 1990, 851. 8. M. Hino, K. Arata, J. Chem. Soc. Chem. Commun., 1987, 1259 9. J.G. Santiesteban, J. C. Vartuli, S. Han, R.D. Bastian, C.D. Chang, J. Catal. 1997, 168, 431. 10. W. Sun, L. Xu, Y. Chu, and W. Shi, J. colloid interface sci., 2003, 266. 99. 11. J. C. Vartuli, J.G. Santiesteban, P. Traverso, N. C. Martinez, C. D. Chang, S. A. Stevenson, J. Catal. 1999, 187, 131. 12. D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled, E. Iglesia, J. Phys. Chem. B, 1999, 103, 630. 13. A.V. Ivanov, T.V. Vasina, O.V Masloboishchikova, E.G. K. Sergeeva, L.M. Kustov, J.I. Houzvicka, Catal. Today, 2002, 73, 95 14. M. Scheithauer, R. E. Jentoft, B.C. Gates, H. Knozinger, J. Catal., 2000, 191, 271. 15. S.Kuba, B. C. Gates, R. K. Grasselli, H. Knozinger, Chem. Commun., 2001, 321 16. X. R. Chen, Y. Q. Du, V. L. Chen, N. P. Xu and C. Y. Mou, Catal. Lett., 2006, 3-4, 187. 17. S.T. Wong, T. Li, S. Cheng, J. F. Lee and C. Y. Mou, J. Catal. 2003, 215, 45 18. S. Kuba, P. Lukinskas, R. Ahmad, F. C. Jentoft, R. K. Grasselli, B. C. Gates, H. Knözinger, J. Catal., 2003, 219, 376 19. S.V. Filimonova, A.V. Nosov, M. Scheithauer, H. Knözinger, J. Catal., 2001, 198, 89. 20. J. Y. Ying, C. P. Mehnert, M. S. Wong, Angew. Chem. Int. Ed., 1999, 38, 56. 21. C. T. Kresge, M. E. Leonowicz, W.J. Roth, J. C, Vartuli, J.C. Beck, Nature, 1992, 359, 710. 22. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834. 23. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chemlka, G. D. Stucky, Science, 1998, 279, 548. 24. Y. Hakuta, H. Hayashi, K. Aria, Curr. Opin. Solid ST. M.,2003, 7, 341. 25. F. Cansell, C. Aymonier, A. L. Serani, Curr. Opin. Solid ST. M.,2003, 7, 331. 26. X. R. Ye, Y. Lin, C. Wang, M. H. Engelhard, Y. Wang, C. M. Wai, J. Mater. Chem., 2004, 14, 908. 27. X. Wang, M.V. Landau, H. Rotter, L. Vradman, A. Wolfson and A. Erenburg, J. Catal., 2004, 222, 565. 28. M. V. Landau, L. Vradman, X. Wang, L. Titelman, Micro. Meso. Mater., 2005, 78, 117. 29. T. Li, S.T. Wong, M.C. Chao, H.P. Lin, C.Y. Mou, S Cheng, Appl. Catal. A, 2004, 261, 211-219. 30. www.harricksci.com 31. S.R. Vaudagna, S.A. Canavese, R. A. Comelli, N.S. Figoli, Appl. Catal. A, 1998, 168, 93-111. 32. M. Scheithauer, T. K. Cheung, R.E. Jentoft, R. K. Grasselli, B.C. Gate, H Knözinger, J. Catal., 1998, 180, 1. 33. A. M. G. Pedrosa, M. J. B. Souza, S. H. Lima, D. M. A. Melo, A. G. Souza and A.S. Arujo, J. Therm. Anal. Calorim., 2007, 87, 703-707. 34. W. Sun, Z. Zhao, C. Guo, X. Ye and Y. Wu, Ind. Eng. Chem. Res., 2000, 39, 3717. 35. Y. Li, W. Zhang, L. Zhang, Q. Yang, Z. Wei, Z. Feng, C. Li, J. Phys. Chem. B, 2004, 108, 9739-9744 36. J. M. Campelo, D. Luna, R. Luque, J. M. Marinas, A. A. Romero, J. J. Calvino, M. P. R. Luque, J. Catal., 2005, 230, 327. 37. C. A. Emeis, J. Catal., 1993, 141, 347. 38. T. Pauporte, Y. S. Olivier and R. Faure, J. Phys. Chem. B, 2003, 107, 8861 39. S. T. Wong, C. C. Hwang, C.Y. Mou, Appl. Catal. B, 2006, 63, 1 40. M. Valigi, D. Gazzoli, I. Pettiti, G. Mattei, S. Colonna, S. D. Rossi, G. Ferraris, Appl. Catal. A, 2002, 231 41. X. Li, K. Nagaoka, L. J. Simon, R. Olindo, J. A. Lercher, J. Catal., 2005, 232, 456. 42. X. Li, K. Nagaoka, L. J. Simon, R. Olindo, J. A. Lercher, A. Hofmann, J. Sauer, J. Am. Chem. Soc., 2005, 127, 16159 43. M. V. Landau, L. Titelman, , L. Vradman, P. Wilson, Chem. Comm., 2003, 594. 44. X. R. Chen, C. L. Chen, N. P. Xu, C. Y. Mou, Catal. Today, 2004, 93-95, 129 45. S. Kuba, M. Che, R. K. Grasselli, H. Knozinger, J.Phys. Chem. B, 2003, 107, 3459. 46. C. D. Baertsch, S. L. Soled, E. Iglesia, J. Phys. Chem. B, 2001, 105, 1320. 47. D. G. Barton, S. L. Soled, G. D. Meitzner, G.A. Fuentes, E. Iglesia, J. Catal., 1999, 181, 57. 48. X. R. Chen, C. L. Chen, N. P. Xu, C. Y. Mou, Catal. Today, 2004, 93-95, 129. 49. H. W. Kouwenhoven, Chem. Eng. Prog., 1971, 67, 65. 50. C. A. Emeis, J. Catal., 1993, 141, 347. 51. R. A. Boyse, E. I. Ko, J. Catal., 1997, 171, 191. 52. F. D. Gregorio, V. Keller, J. Catal., 2004, 225, 45 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40217 | - |
dc.description.abstract | 文獻上鎢鋯氧化物可以在低溫的反應條件之下,對於烷類的異構化反應扮演有效的固體酸的角色。然而,鎢鋯氧化物其本身的比表面積通常只有50 m2/g。而介孔洞材料SBA-15具有高比表面積 ( ~800 m2/g) 以及均勻的六角柱狀規則孔洞,再加上其本身的高水熱穩定性,使得它成為一個很好的觸媒載體。為了增加鎢鋯氧化物的比表面積,本篇論文利用不同方式的沉積沉澱法,將鎢鋯氧化物負載於介孔洞的SBA-15材料上,用來比較它們對於直鏈戊烷異構化反應的反應活性。探討不同的反應條件所合成的鎢鋯氧化物複合材料,譬如將鎢鋯氧化物負載於SBA-15的方式、氧化鎢和氧化鋯以及SBA-15三者之間的成分比例、此複合材料之鍛燒溫度,以及白金促進劑的添加與否。由反應的測試可知,利用超臨界乙醇共沉澱法所合成之鎢鋯氧化物複合材料,由低角度X光繞射得知其仍然保有原來SBA-15的規則六角柱狀排列。而且從氮氣吸附脫附實驗可知得到高表面積的觸媒材料。然而,若是以直接含浸法將鎢鋯氧化物負載於介孔洞SBA-15上,所合成的混合金屬氧化物顆粒會阻塞並填滿介孔洞SBA-15之孔道。所合成的複合材料對於直鏈戊烷異構化反應的反應過程發現,1wt%的白金當作促進劑添加到此複合材料以及反應過程中所供應的氫氣,對於此異構化反應是很必須要的兩個要素。以超臨界乙醇共沉澱法將鎢鋯氧化物負載於介孔洞SBA-15材料,其成分比例當氧化鎢對於氧化鋯對於SBA-15的重量比為1:2:2的時候,所得的複合材料對直鏈戊烷異構化反應有最大的反應活性。反應的主產物為異戊烷,其選擇率約70 %,而選擇率高達95 %以上。異構化反應過程之選擇率以及觸媒反應的失活狀態受到反應過程中所添加之氫氣含量而有所改變。 | zh_TW |
dc.description.abstract | Zirconia loaded with tungsten oxide (abbreviated as WZ) has been reported to be an efficient solid catalyst at relatively low temperatures in the skeletal isomerization of alkane or benzoylation of toluene, which are usually catalyzed by strong acids. In order to increase the surface area of tungstated zirconia, which is usually around 50 m2/g, mesoporous SBA-15 with a uniform hexagonal array of channel-shaped mesopores and very high surface area (typically around 800 m2/g) was used as the support for preparing supported WZ catalysts. In the present study, the supported WZ catalysts were prepared by depositing precipitation methods, and the catalytic activities of the resultant materials were compared in n-pentane isomerization reaction. Factors of catalyst preparation such as the method of supporting WZ on SBA-15, the weight ratios of tungsten and zirconia to SBA-15, the calcination temperature of the composite materials, and the addition of Pt were examined. The catalyst prepared through supercritical ethanol was found to retain well ordered porous structure based on small angle X-ray diffraction measurements and high surface area by nitrogen sorption experiments. On the contrary, SBA-15 supported tungstated zirconia prepared by direct evaporation was found to have the mixed oxide particles block the pores of SBA-15. The impregnation of 1% Pt on the materials before used as the catalyst in n-pentane isomerization and the inlet of hydrogen flow during reaction were found to be essential. The SBA-15 supported WZ catalyst with the weight ratio of WO3 : ZrO2 : SBA-15 in 1: 2: 2 prepared by supercritical ethanol treatment showed the highest isomerization activity than the others. The main product of isomerization reaction was iso-pentane. The selectivity of the isomerization reaction and the deactivation of catalysts were also found to vary with the feed of hydrogen gas. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T16:42:49Z (GMT). No. of bitstreams: 1 ntu-97-F90223016-1.pdf: 5044844 bytes, checksum: 891cc7a2cf277cd921279d9fd462ae91 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 第一章 序論…………………………………………………………………………..1
1-1 研究起因……………………………………………………………………….1 1-2 鎢鋯氧化物的研究與發展…………………………………………………….6 1-3 介孔材料的發明……………………………………………………………….9 1-4 超臨界流體…………………………………………………………………...11 1-5 研究目標與動機……………………………………………………………...13 第二章 實驗部份……………………………………………………………………14 2-1 化學藥品……………………………………………………………………...14 2-2觸媒的製備……………………………………………………………………15 2-2-1鎢鋯氧化物的製備……………………………………………………….15 1. 直接含浸法………………………………………………………………15 2. 超臨界乙醇共沉澱法……………………………………………………15 2-2-2 鎢鋯氧化物負載於SBA-15載體之觸媒的製備……………………….16 1. SBA-15的合成………………………………………………………….16 2. 同時放入氧化鎢與氧化鋯於SBA-15載體……………………………..16 3. 分次負載氧化鋯與氧化鎢於SBA-15載體上…………………………...19 2-3 鑑定觸媒之儀器……………………………………………………………...21 1. X-光粉末繞射 (X-Ray Powder Diffraction,XRD)…………………………21 2. 氮氣吸附-脫附等溫曲線 (N2 Adsorption-desorption Isotherm)………......21 3. 紫外及可見光譜分析 (UV-Vis Spectroscopy)……………………………..23 4. 反射式霍氏轉換紅外線光譜 (Diffuse Reflectance Fourier Transform Infrared Spectroscopy,DRIFT-IR)…………………………………………23 5. 氨氣吸附程序升溫脫附 (Ammonia Adsorption-Temperature programmed Desorption,NH3-TPD)…………………………………………………….25 6. 穿透式電子顯微鏡 (Transmission Electron Microscopy,TEM)…………25 7. 氣相層析質譜 (Gas Chromatography-Mass Spectroscopy,GC-Mass)……25 8. 氣相層析 (Gas Chromatography Spectroscopy,GC)……………………..26 9. 熱重分析 (Thermal Analysis)………………………………………………26 10. 誘導耦合電漿質譜 (Inductively Coupled Plasma Mass Spectrometry, ICP-Mass)………………………………………………………………….26 11. 能量散射光譜分析 (Energy Dispersive Spectrometry, EDX)……………27 12. 氫氣程序升溫還原 (Temperature Programmed Reduction, TPR)………..27 2-4催化反應………………………………………………………………………28 第三章 結果與討論…………………………………………………………………30 3-1 鎢鋯氧化物觸媒的製備、鑑定與催化反應………………………………...30 3-1-1 直接含浸法……………………………………………………………...30 3-1-2 超臨界乙醇共沉澱法…………………………………………………...35 3-2 負載於介孔洞SBA-15之鎢鋯氧化物觸媒的製備、鑑定與催化反應……41 3-2-1以一次合成的方式同時負載氧化鎢與氧化鋯於介孔洞SBA-15……...41 3-2-2分次負載氧化鎢與氧化鋯於介孔洞SBA-15…………………………...44 3-2-3 對正戊烷異構化反應的活性…………………………………………...56 3-2-3-1以一次合成的方式同時負載氧化鎢與氧化鋯於介孔洞SBA-15…56 3-2-3-2分次負載氧化鎢與氧化鋯於介孔洞SBA-15………………………59 3-3 一次合成的方式中直接含浸法與超臨界乙醇共沉澱法的比較………….61 3-3-1 鎢鋯氧化物負載於介孔洞SBA-15其物理化學性質之鑑定………….61 3-3-2 對正戊烷異構化反應之活性比較……………………………………...66 3-3-3 觸媒還原性之比較……………………………………………………...68 3-4 超臨界乙醇共沉澱法合成鎢鋯氧化物於介孔洞SBA-15之複合材料……70 3-4-1鎢鋯氧化物與介孔洞SBA-15之間比例的探討………………………..70 3-4-2 合成反應溫度的影響…………………………………………………...84 3-4-3 鍛燒溫度對反應活性之影響…………………………………………...87 3-4-4 氫氣分壓對反應活性之探討…………………………………………...89 3-4-5 觸媒的重覆使用性……………………………………………………...96 3-5 觸媒酸性的鑑定……………………………………………………………...97 3-6 W LIII 吸收邊緣之X光吸收近邊緣結構 (X-ray absorption near-edge structure (XANES))…………………………………………………………112 3-7催化反應機制探討………………………………………………………….130 3-8 推測之反應機制…………………………………………………………….152 第四章 結論………………………………………………………………………..156 參考文獻……………………………………………………………………………158 | |
dc.language.iso | zh-TW | |
dc.title | 介孔洞SBA-15負載之鎢鋯氧化物對正戊烷異構化反應活性之研究 | zh_TW |
dc.title | n-Pentane Isomerization over W/Zr Mixed Oxides Supported on Mesoporous SBA-15 | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 牟中原,簡淑華,林秋薰,萬本儒 | |
dc.subject.keyword | 介孔洞材料,鎢鋯氧化物,異構化反應, | zh_TW |
dc.subject.keyword | mesoporous SBA-15,tungsten zirconia,isomerization, | en |
dc.relation.page | 161 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-08-01 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 4.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。