Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40206
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江伯倫(Bor-Luen Chiang)
dc.contributor.authorBor-Yu Tsaien
dc.contributor.author蔡博宇zh_TW
dc.date.accessioned2021-06-14T16:42:38Z-
dc.date.available2008-09-11
dc.date.copyright2008-09-11
dc.date.issued2008
dc.date.submitted2008-08-01
dc.identifier.citationAbbas-Terki, T., Blanco-Bose, W., Deglon, N., Pralong, W. and Aebischer, P. (2002). Lentiviral-mediated RNA interference. Hum Gene Ther 13, 2197-2201.
Alisky, J.M. and Davidson, B.L. (2004). Towards therapy using RNA interference. Am J Pharmacogenomics 4, 45-51.
Ardavin, C., Amigorena, S. and Reis e Sousa, C. (2004). Dendritic cells: immunobiology and cancer immunotherapy. Immunity 20, 17-23.
Armstrong, S.A. and Look, A.T. (2005). Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol 23, 6306-6315.
Arteaga, C.L., Hurd, S.D., Winnier, A.R., Johnson, M.D., Fendly, B.M. and Forbes, J.T. (1993). Anti-transforming growth factor (TGF)-beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-beta interactions in human breast cancer progression. J Clin Invest 92, 2569-2576.
Berger, C.L., Tigelaar, R., Cohen, J., Mariwalla, K., Trinh, J., Wang, N. and Edelson, R.L. (2005). Cutaneous T-cell lymphoma: malignant proliferation of T-regulatory cells. Blood 105, 1640-1647.
Bergmann, C., Strauss, L., Zeidler, R., Lang, S. and Whiteside, T.L. (2007). Expansion and characteristics of human T regulatory type 1 cells in co-cultures simulating tumor microenvironment. Cancer Immunol Immunotherapy.
Bhardwaj, N., Young, J.W., Nisanian, A.J., Baggers, J. and Steinman, R.M. (1993). Small amounts of superantigen, when presented on dendritic cells, are sufficient to initiate T cell responses. J Exp Med 178, 633-642.
Boczkowski, D., Nair, S.K., Snyder, D. and Gilboa, E. (1996). Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 184, 465-472.
Bohle, A., Gerdes, J., Ulmer, A.J., Hofstetter, A.G. and Flad, H.D. (1990). Effects of local bacillus Calmette-Guerin therapy in patients with bladder carcinoma on immunocompetent cells of the bladder wall. J Urol 144, 53-58.
Bondanza, A., Zimmermann, V.S., Dell'Antonio, G., Dal Cin, E., Capobianco, A., Sabbadini, M.G., Manfredi, A.A. and Rovere-Querini, P. (2003). Cutting edge: dissociation between autoimmune response and clinical disease after vaccination with dendritic cells. J Immunol 170, 24-27.
Brown, J.P., Klitzman, J.M., Hellstrom, I., Nowinski, R.C. and Hellstrom, K.E. (1978). Antibody response of mice to chemically induced tumors. Proc Natl Acad Sci U S A 75, 955-958.
Brunkow, M.E., Jeffery, E.W., Hjerrild, K.A., Paeper, B., Clark, L.B., Yasayko, S.A., Wilkinson, J.E., Galas, D., Ziegler, S.F. and Ramsdell, F. (2001). Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27, 68-73.
Bui, J.D. and Schreiber, R.D. (2007). Cancer immunosurveillance, immunoediting and inflammation: independent or interdependent processes? Curr Opin Immunol 19, 203-208.
Burnet, F.M. (1970). The concept of immunological surveillance. Prog Exp Tumor Res 13, 1-27.
Cawley, D., Chiang, B.L., Ansari, A. and Gershwin, M.E. (1991). Ionic binding characteristics of monoclonal autoantibodies to DNA from NZB.H-2bm12 mice. Autoimmunity 9, 301-309.
Chen, A., Liu, S., Park, D., Kang, Y. and Zheng, G. (2007). Depleting intratumoral CD4+CD25+ regulatory T cells via FasL protein transfer enhances the therapeutic efficacy of adoptive T cell transfer. Cancer Res 67, 1291-1298.
Chen, L., Ashe, S., Brady, W.A., Hellstrom, I., Hellstrom, K.E., Ledbetter, J.A., McGowan, P. and Linsley, P.S. (1992). Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 71, 1093-1102.
Chen, S., Ishii, N., Ine, S., Ikeda, S., Fujimura, T., Ndhlovu, L.C., Soroosh, P., Tada, K., Harigae, H., Kameoka, J., Kasai, N., Sasaki, T. and Sugamura, K. (2006). Regulatory T cell-like activity of Foxp3+ adult T cell leukemia cells. Int Immunol 18, 269-277.
Chen, Y., Kuchroo, V.K., Inobe, J., Hafler, D.A. and Weiner, H.L. (1994). Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265, 1237-1240.
Chen, Y.T., Obata, Y., Stockert, E., Takahashi, T. and Old, L.J. (1987). Tla-region genes and their products. Immunol Res 6, 30-45.
Cohen, P.A., Cohen, P.J., Rosenberg, S.A. and Mule, J.J. (1994). CD4+ T-cells from mice immunized to syngeneic sarcomas recognize distinct, non-shared tumor antigens. Cancer Res 54, 1055-1058.
Cohen, P.J., Cohen, P.A., Rosenberg, S.A., Katz, S.I. and Mule, J.J. (1994). Murine epidermal Langerhans cells and splenic dendritic cells present tumor-associated antigens to primed T cells. Eur J Immunol 24, 315-319.
Condon, C., Watkins, S.C., Celluzzi, C.M., Thompson, K. and Falo, L.D., Jr. (1996). DNA-based immunization by in vivo transfection of dendritic cells. Nat Med 2, 1122-1128.
Curiel, T.J., Coukos, G., Zou, L., Alvarez, X., Cheng, P., Mottram, P., Evdemon-Hogan, M., Conejo-Garcia, J.R., Zhang, L., Burow, M., Zhu, Y., Wei, S., Kryczek, I., Daniel, B., Gordon, A., Myers, L., Lackner, A., Disis, M.L., Knutson, K.L., Chen, L. and Zou, W. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10, 942-949.
Defendi, V. (1963). Effect of SV 40 virus immunization on growth of transplantable SV 40 and polyoma virus tumors in hamsters. Proc Soc Exp Biol Med 113, 12-16.
Degl'Innocenti, E., Grioni, M., Capuano, G., Jachetti, E., Freschi, M., Bertilaccio, M.T., Hess-Michelini, R., Doglioni, C. and Bellone, M. (2008). Peripheral T-cell tolerance associated with prostate cancer is independent from CD4+CD25+ regulatory T cells. Cancer Res 68, 292-300.
Dialynas, D.P., Lee, M.J., Gold, D.P., Shao, L., Yu, A.L., Borowitz, M.J. and Yu, J. (2001). Preconditioning with fetal cord blood facilitates engraftment of primary childhood T-cell acute lymphoblastic leukemia in immunodeficient mice. Blood 97, 3218-3225.
Dighiero, G. and Hamblin, T.J. (2008). Chronic lymphocytic leukaemia. Lancet 371, 1017-1029.
Dunn, G.P., Bruce, A.T., Ikeda, H., Old, L.J. and Schreiber, R.D. (2002). Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3, 991-998
Ebert, L.M., Tan, B.S., Browning, J., Svobodova, S., Russell, S.E., Kirkpatrick, N., Gedye, C., Moss, D., Ng, S.P., MacGregor, D., Davis, I.D., Cebon, J. and Chen, W. (2008). The regulatory T cell-associated transcription factor FoxP3 is expressed by tumor cells. Cancer Res 68, 3001-3009.
Faaber, P., Rijke, T.P., van de Putte, L.B., Capel, P.J. and Berden, J.H. (1986). Cross-reactivity of human and murine anti-DNA antibodies with heparan sulfate. The major glycosaminoglycan in glomerular basement membranes. J Clin Invest 77, 1824-1830
Fearon, E.R., Itaya, T., Hunt, B., Vogelstein, B. and Frost, P. (1988). Induction in a murine tumor of immunogenic tumor variants by transfection with a foreign gene. Cancer Res 48, 2975-2980.
Fields, R.C., Shimizu, K. and Mule, J.J. (1998). Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo. Proc Natl Acad Sci U S A 95, 9482-9487.
Fong, L. and Engleman, E.G. (2000). Dendritic cells in cancer immunotherapy. Annu Rev Immunol 18, 245-273.
Fontenot, J.D. and Rudensky, A.Y. (2005). A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol 6, 331-337.
Giannopoulos, K., Schmitt, M., Wlasiuk, P., Chen, J., Bojarska-Junak, A., Kowal, M., Rolinski, J. and Dmoszynska, A. (2007). The high frequency of T regulatory cells in patients with B-cell chronic lymphocytic leukemia is diminished through treatment with thalidomide. Leukemia 22, 222-224.
Gjerset, R., Yu, A. and Haas, M. (1990). Establishment of continuous cultures of T-cell acute lymphoblastic leukemia cells at diagnosis. Cancer Res 50, 10-14.
Gold, P. and Freedman, S.O. (1965). Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques. J Exp Med 121, 439-462.
Grauer, O.M., Nierkens, S., Bennink, E., Toonen, L.W., Boon, L., Wesseling, P., Sutmuller, R.P. and Adema, G.J. (2007). CD4+FoxP3+ regulatory T cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Int J Cancer 121, 95-105.
Groux, H., O'Garra, A., Bigler, M., Rouleau, M., Antonenko, S., de Vries, J.E. and Roncarolo, M.G. (1997). A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737-742.
Guo, Y., Wu, M., Chen, H., Wang, X., Liu, G., Li, G., Ma, J. and Sy, M.S. (1994). Effective tumor vaccine generated by fusion of hepatoma cells with activated B cells. Science 263, 518-520.
Hahn, W.C. and Weinberg, R.A. (2002). Rules for making human tumor cells. N Engl J Med 347, 1593-1603.
Hahne, M., Rimoldi, D., Schroter, M., Romero, P., Schreier, M., French, L.E., Schneider, P., Bornand, T., Fontana, A., Lienard, D., Cerottini, J. and Tschopp, J. (1996). Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 274, 1363-1366.
Hanahan, D. and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57-70
Hanna, N. and Fidler, I.J. (1980). Role of natural killer cells in the destruction of circulating tumor emboli. J Natl Cancer Inst 65, 801-809.
Hayashi, H., Tanaka, K., Jay, F., Khoury, G. and Jay, G. (1985). Modulation of the tumorigenicity of human adenovirus-12-transformed cells by interferon. Cell 43, 263-267.
Hibbs, J.B., Jr., Lambert, L.H., Jr. and Remington, J.S. (1972). Control of carcinogenesis: a possible role for the activated macrophage. Science 177, 998-1000.
Hill, J.A., Feuerer, M., Tash, K., Haxhinasto, S., Perez, J., Melamed, R., Mathis, D. and Benoist, C. (2007). Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 27, 786-800.
Hinz, S., Pagerols-Raluy, L., Oberg, H.H., Ammerpohl, O., Grussel, S., Sipos, B., Grutzmann, R., Pilarsky, C., Ungefroren, H., Saeger, H.D., Kloppel, G., Kabelitz, D. and Kalthoff, H. (2007). Foxp3 expression in pancreatic carcinoma cells as a novel mechanism of immune evasion in cancer. Cancer Res 67, 8344-8350.
Hiraoka, N., Onozato, K., Kosuge, T. and Hirohashi, S. (2006). Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 12, 5423-5434.
Hjalgrim, L.L., Westergaard, T., Rostgaard, K., Schmiegelow, K., Melbye, M., Hjalgrim, H. and Engels, E.A. (2003). Birth weight as a risk factor for childhood leukemia: a meta-analysis of 18 epidemiologic studies. Am J Epidemiol 158, 724-735.
Hsieh, C.L., Chen, D.S. and Hwang, L.H. (2000). Tumor-induced immunosuppression: a barrier to immunotherapy of large tumors by cytokine-secreting tumor vaccine. Hum Gene Ther 11, 681-692.
Hui, K.M., Sim, T., Foo, T.T. and Oei, A.A. (1989). Tumor rejection mediated by transfection with allogeneic class I histocompatibility gene. J Immunol 143, 3835-3843.
Iakoubov, L., Rokhlin, O. and Torchilin, V. (1995). Anti-nuclear autoantibodies of the aged reactive against the surface of tumor but not normal cells. Immunol Lett 47, 147-149.
Iakoubov, L.Z. and Torchilin, V.P. (1997). A novel class of antitumor antibodies: nucleosome-restricted antinuclear autoantibodies (ANA) from healthy aged nonautoimmune mice. Oncol Res 9, 439-446.
Inaba, K., Inaba, M., Naito, M. and Steinman, R.M. (1993). Dendritic cell progenitors phagocytose particulates, including bacillus Calmette-Guerin organisms, and sensitize mice to mycobacterial antigens in vivo. J Exp Med 178, 479-488.
Iwakuma, T., Cui, Y. and Chang, L.J. (1999). Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology 261, 120-132.
Jackson, A.L., Bartz, S.R., Schelter, J., Kobayashi, S.V., Burchard, J., Mao, M., Li, B., Cavet, G. and Linsley, P.S. (2003). Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21, 635-637.
Jacob, L., Viard, J.P., Allenet, B., Anin, M.F., Slama, F.B., Vandekerckhove, J., Primo, J., Markovits, J., Jacob, F., Bach, J.F. and et al. (1989). A monoclonal anti-double-stranded DNA autoantibody binds to a 94-kDa cell-surface protein on various cell types via nucleosomes or a DNA-histone complex. Proc Natl Acad Sci U S A 86, 4669-4673.
Kersey, J.H. (1997). Fifty years of studies of the biology and therapy of childhood leukemia. Blood 90, 4243-4251.
Klein, E., Vanky, F., Galili, U., Vose, B.M. and Fopp, M. (1980). Separation and characteristics of tumor-infiltrating lymphocytes in man. Contemp Top Immunobiol 10, 79-107.
Klein, G., Sjogren, H.O., Klein, E. and Hellstrom, K.E. (1960). Demonstration of resistance against methylcholanthrene-induced sarcomas in the primary autochthonous host. Cancer Res 20, 1561-1572.
Korst, R.J., Ailawadi, M., Lee, J.M., Lee, S., Yamada, R., Mahtabifard, A. and Crystal, R.G. (2001). Adenovirus gene transfer vectors inhibit growth of lymphatic tumor metastases independent of a therapeutic transgene. Hum Gene Ther 12, 1639-1649.
Koutouzov, S., Cabrespines, A., Amoura, Z., Chabre, H., Lotton, C. and Bach, J.F. (1996). Binding of nucleosomes to a cell surface receptor: redistribution and endocytosis in the presence of lupus antibodies. Eur J Immunol 26, 472-486.
Lafer, E.M., Rauch, J., Andrzejewski, C., Jr., Mudd, D., Furie, B., Furie, B., Schwartz, R.S. and Stollar, B.D. (1981). Polyspecific monoclonal lupus autoantibodies reactive with both polynucleotides and phospholipids. J Exp Med 153, 897-909.
Lange, B., Valtieri, M., Santoli, D., Caracciolo, D., Mavilio, F., Gemperlein, I., Griffin, C., Emanuel, B., Finan, J., Nowell, P. and et al. (1987). Growth factor requirements of childhood acute leukemia: establishment of GM-CSF-dependent cell lines. Blood 70, 192-199.
Lee, J.C., Kim, D.C., Gee, M.S., Saunders, H.M., Sehgal, C.M., Feldman, M.D., Ross, S.R. and Lee, W.M. (2002). Interleukin-12 inhibits angiogenesis and growth of transplanted but not in situ mouse mammary tumor virus-induced mammary carcinomas. Cancer Res 62, 747-755.
Lill, N.L., Tevethia, M.J., Hendrickson, W.G. and Tevethia, S.S. (1992). Cytotoxic T lymphocytes (CTL) against a transforming gene product select for transformed cells with point mutations within sequences encoding CTL recognition epitopes. J Exp Med 176, 449-457.
Lindenmann, J. and Klein, P.A. (1967). Viral oncolysis: increased immunogenicity of host cell antigen associated with influenza virus. J Exp Med 126, 93-108.
Linsley, P.S., Brady, W., Grosmaire, L., Aruffo, A., Damle, N.K. and Ledbetter, J.A. (1991). Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J Exp Med 173, 721-730.
Liu, V.C., Wong, L.Y., Jang, T., Shah, A.H., Park, I., Yang, X., Zhang, Q., Lonning, S., Teicher, B.A. and Lee, C. (2007). Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-beta. J Immunol 178, 2883-2892.
Livingston, P.O., Albino, A.P., Chung, T.J., Real, F.X., Houghton, A.N., Oettgen, H.F. and Old, L.J. (1985). Serological response of melanoma patients to vaccines prepared from VSV lysates of autologous and allogeneic cultured melanoma cells. Cancer 55, 713-720.
Livingston, P.O., Ragupathi, G. and Musselli, C. (2000). Autoimmune and antitumor consequences of antibodies against antigens shared by normal and malignant tissues. J Clin Immunol 20, 85-93.
Liyanage, U.K., Moore, T.T., Joo, H.G., Tanaka, Y., Herrmann, V., Doherty, G., Drebin, J.A., Strasberg, S.M., Eberlein, T.J., Goedegebuure, P.S. and Linehan, D.C. (2002). Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169, 2756-2761.
Ljunggren, H.G. and Karre, K. (1990). In search of the 'missing self': MHC molecules and NK cell recognition. Immunol Today 11, 237-244.
Ludewig, B., Ochsenbein, A.F., Odermatt, B., Paulin, D., Hengartner, H. and Zinkernagel, R.M. (2000). Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease. J Exp Med 191, 795-804.
Lukacs, K.V., Lowrie, D.B., Stokes, R.W. and Colston, M.J. (1993). Tumor cells transfected with a bacterial heat-shock gene lose tumorigenicity and induce protection against tumors. J Exp Med 178, 343-348.
Manickan, E., Kanangat, S., Rouse, R.J., Yu, Z. and Rouse, B.T. (1997). Enhancement of immune response to naked DNA vaccine by immunization with transfected dendritic cells. J Leukoc Biol 61, 125-132.
Marchand, M., Brasseur, F., van der Bruggen, P., Coulie, P. and Boon, T. (1993). Perspectives for immunization of HLA-A1 patients carrying a malignant melanoma expressing gene MAGE-1. Dermatology 186, 278-280.
Marson, A., Kretschmer, K., Frampton, G.M., Jacobsen, E.S., Polansky, J.K., MacIsaac, K.D., Levine, S.S., Fraenkel, E., von Boehmer, H. and Young, R.A. (2007). Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445, 931-935.
Maynard, C.L., Harrington, L.E., Janowski, K.M., Oliver, J.R., Zindl, C.L., Rudensky, A.Y. and Weaver, C.T. (2007). Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3- precursor cells in the absence of interleukin 10. Nat Immunol 8, 931-941.
Mayordomo, J.I., Zorina, T., Storkus, W.J., Zitvogel, L., Celluzzi, C., Falo, L.D., Melief, C.J., Ildstad, S.T., Kast, W.M., Deleo, A.B. and et al. (1995). Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat Med 1, 1297-1302.
Mnich, S.J., Veenhuizen, A.W., Monahan, J.B., Sheehan, K.C., Lynch, K.R., Isakson, P.C. and Portanova, J.P. (1995). Characterization of a monoclonal antibody that neutralizes the activity of prostaglandin E2. J Immunol 155, 4437-4444.
Moll, H., Fuchs, H., Blank, C. and Rollinghoff, M. (1993). Langerhans cells transport Leishmania major from the infected skin to the draining lymph node for presentation to antigen-specific T cells. Eur J Immunol 23, 1595-1601.
Morton, D.L., Foshag, L.J., Hoon, D.S., Nizze, J.A., Famatiga, E., Wanek, L.A., Chang, C., Davtyan, D.G., Gupta, R.K., Elashoff, R. and et al. (1992). Prolongation of survival in metastatic melanoma after active specific immunotherapy with a new polyvalent melanoma vaccine. Ann Surg 216, 463-482.
Mullen, C.A., Urban, J.L., Van Waes, C., Rowley, D.A. and Schreiber, H. (1985). Multiple cancers. Tumor burden permits the outgrowth of other cancers. J Exp Med 162, 1665-1682.
Munn, D.H. and Cheung, N.K. (1990). Phagocytosis of tumor cells by human monocytes cultured in recombinant macrophage colony-stimulating factor. J Exp Med 172, 231-237.
Nair, S., Boczkowski, D., Fassnacht, M., Pisetsky, D. and Gilboa, E. (2007). Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity. Cancer Res 67, 371-380.
Nair, S.K., Boczkowski, D., Morse, M., Cumming, R.I., Lyerly, H.K. and Gilboa, E. (1998). Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol 16, 364-369.
Nakahara, T., Urabe, K., Fukagawa, S., Uchi, H., Inaba, K., Furue, M. and Moroi, Y. (2005). Engagement of human monocyte-derived dendritic cells into interleukin (IL)-12 producers by IL-1beta + interferon (IFN)-gamma. Clin Exp Immunol 139, 476-482.
Nelson, B.H. (2004). IL-2, regulatory T cells, and tolerance. J Immunol 172, 3983-3988.
Nik Tavakoli, N., Hambly, B.D., Sullivan, D.R. and Bao, S. (2007). Forkhead box protein 3: Essential immune regulatory role. Int J Biochem Cell Biol doi:10.1016/j.biocel.2007.10.004.
Old, L.J. (1981). Cancer immunology: the search for specificity--G. H. A. Clowes Memorial Lecture. Cancer Res 41, 361-375.
Ono, M., Yaguchi, H., Ohkura, N., Kitabayashi, I., Nagamura, Y., Nomura, T., Miyachi, Y., Tsukada, T. and Sakaguchi, S. (2007). Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446, 685-689.
Overwijk, W.W., Lee, D.S., Surman, D.R., Irvine, K.R., Touloukian, C.E., Chan, C.C., Carroll, M.W., Moss, B., Rosenberg, S.A. and Restifo, N.P. (1999). Vaccination with a recombinant vaccinia virus encoding a 'self' antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4(+) T lymphocytes. Proc Natl Acad Sci U S A 96, 2982-2987.
Paglia, P., Chiodoni, C., Rodolfo, M. and Colombo, M.P. (1996). Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo. J Exp Med 183, 317-322.
Pandiyan, P., Zheng, L., Ishihara, S., Reed, J. and Lenardo, M.J. (2007). CD4(+)CD25(+)Foxp3(+) regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4(+) T cells. Nat Immunol 8, 1353-1362.
Pardoll, D.M. (1999). Inducing autoimmune disease to treat cancer. Proc Natl Acad Sci U S A 96, 5340-5342.
Persengiev, S.P., Zhu, X. and Green, M.R. (2004). Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). Rna 10, 12-18.
Porgador, A., Snyder, D. and Gilboa, E. (1996). Induction of antitumor immunity using bone marrow-generated dendritic cells. J Immunol 156, 2918-2926.
Prevosto, C., Zancolli, M., Canevali, P., Zocchi, M.R. and Poggi, A. (2007). Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell-lymphocyte interaction. Haematologica 92, 881-888.
Pui, C.H., Relling, M.V. and Downing, J.R. (2004). Acute lymphoblastic leukemia. N Engl J Med 350, 1535-1548.
Pytlik, R., Hofman, P., Kideryova, L., Cervinkova, P., Obrtlikova, P., Salkova, J., Trneny, M. and Klener, P. (2008). Dendritic cells and T lymphocyte interactions in patients with lymphoid malignancies. Physiol Res 57, 289-298.
Raz, E., Ben-Bassat, H., Davidi, T., Shlomai, Z. and Eilat, D. (1993). Cross-reactions of anti-DNA autoantibodies with cell surface proteins. Eur J Immunol 23, 383-390.
Real, F.X., Mattes, M.J., Houghton, A.N., Oettgen, H.F., Lloyd, K.O. and Old, L.J. (1984). Class 1 (unique) tumor antigens of human melanoma. Identification of a 90,000 dalton cell surface glycoprotein by autologous antibody. J Exp Med 160, 1219-1233.
Restifo, N.P., Esquivel, F., Asher, A.L., Stotter, H., Barth, R.J., Bennink, J.R., Mule, J.J., Yewdell, J.W. and Rosenberg, S.A. (1991). Defective presentation of endogenous antigens by a murine sarcoma. Implications for the failure of an anti-tumor immune response. J Immunol 147, 1453-1459.
Restifo, N.P., Spiess, P.J., Karp, S.E., Mule, J.J. and Rosenberg, S.A. (1992). A nonimmunogenic sarcoma transduced with the cDNA for interferon gamma elicits CD8+ T cells against the wild-type tumor: correlation with antigen presentation capability. J Exp Med 175, 1423-1431.
Reynolds, C.W., Sharrow, S.O., Ortaldo, J.R. and Herberman, R.B. (1981). Natural killer activity in the rat. II. Analysis of surface antigens on LGL by flow cytometry. J Immunol 127, 2204-2208.
Roddie, H., Klammer, M., Thomas, C., Thomson, R., Atkinson, A., Sproul, A., Waterfall, M., Samuel, K., Yin, J., Johnson, P. and Turner, M. (2006). Phase I/II study of vaccination with dendritic-like leukaemia cells for the immunotherapy of acute myeloid leukaemia. Br J Haematol 133, 152-157.
Roncador, G., Garcia, J.F., Garcia, J.F., Maestre, L., Lucas, E., Menarguez, J., Ohshima, K., Nakamura, S., Banham, A.H. and Piris, M.A. (2005). FOXP3, a selective marker for a subset of adult T-cell leukaemia/lymphoma. Leukemia 19, 2247-2253.
Roush, W. (1997). Antisense aims for a renaissance. Science 276, 1192-1193.
Rubinson, D.A., Dillon, C.P., Kwiatkowski, A.V., Sievers, C., Yang, L., Kopinja, J., Rooney, D.L., Zhang, M., Ihrig, M.M., McManus, M.T., Gertler, F.B., Scott, M.L. and Van Parijs, L. (2003). A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33, 401-406.
Sakaguchi, S. (2005). Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6, 345-352.
Sato, H., Boyse, E.A., Aoki, T., Iritani, C. and Old, L.J. (1973). Leukemia-associated transplantation antigens related to murine leukemia virus. The X.1 system: immune response controlled by a locus linked to H-2. J Exp Med 138, 593-606.
Satthaporn, S., Robins, A., Vassanasiri, W., El-Sheemy, M., Jibril, J.A., Clark, D., Valerio, D. and Eremin, O. (2004). Dendritic cells are dysfunctional in patients with operable breast cancer. Cancer Immunol Immunotherapy 53, 510-518.
Schuler, G. and Steinman, R.M. (1997). Dendritic cells as adjuvants for immune-mediated resistance to tumors. J Exp Med 186, 1183-1187.
Shaif-Muthana, M., McIntyre, C., Sisley, K., Rennie, I. and Murray, A. (2000). Dead or alive: immunogenicity of human melanoma cells when presented by dendritic cells. Cancer Res 60, 6441-6447.
Shimizu, K., Fields, R.C., Giedlin, M. and Mule, J.J. (1999). Systemic administration of interleukin 2 enhances the therapeutic efficacy of dendritic cell-based tumor vaccines. Proc Natl Acad Sci U S A 96, 2268-2273.
Smith, S.D., Shatsky, M., Cohen, P.S., Warnke, R., Link, M.P. and Glader, B.E. (1984). Monoclonal antibody and enzymatic profiles of human malignant T-lymphoid cells and derived cell lines. Cancer Res 44, 5657-5660.
Smith, S.D., Uyeki, E.M. and Lowman, J.T. (1978). Colony formation in vitro by leukemic cells in acute lymphoblastic leukemia (ALL). Blood 52, 712-718.
Smyth, M.J., Dunn, G.P. and Schreiber, R.D. (2006). Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 90, 1-50.
Sornasse, T., Flamand, V., De Becker, G., Bazin, H., Tielemans, F., Thielemans, K., Urbain, J., Leo, O. and Moser, M. (1992). Antigen-pulsed dendritic cells can efficiently induce an antibody response in vivo. J Exp Med 175, 15-21.
Stevenson, F.K., Elliott, E.V. and Stevenson, G.T. (1977). Some effects on leukaemic B lymphocytes of antibodies to defined regions of their surface immunoglobulin. Immunology 32, 549-557.
Suen, J.L., Chuang, Y.H. and Chiang, B.L. (2002). In vivo tolerance breakdown with dendritic cells pulsed with U1A protein in non-autoimmune mice: the induction of a high level of autoantibodies but not renal pathological changes. Immunology 106, 326-335.
Suen, J.L., Chuang, Y.H., Tsai, B.Y., Yau, P.M. and Chiang, B.L. (2004). Treatment of murine lupus using nucleosomal T cell epitopes identified by bone marrow-derived dendritic cells. Arthritis Rheum 50, 3250-3259.
Tanaka, K., Isselbacher, K.J., Khoury, G. and Jay, G. (1985). Reversal of oncogenesis by the expression of a major histocompatibility complex class I gene. Science 228, 26-30.
Tevethia, S.S., Greenfield, R.S., Flyer, D.C. and Tevethia, M.J. (1980). SV40 transplantation antigen: relationship to SV40-specific proteins. Cold Spring Harb Symp Quant Biol 44 Pt 1, 235-242.
Thomas, D.G., Lannigan, C.B. and Behan, P.O. (1975). Letter: Impaired cell-mediated immunity in human brain tumours. Lancet 1, 1389-1390.
Tomar, R.S., Matta, H. and Chaudhary, P.M. (2003). Use of adeno-associated viral vector for delivery of small interfering RNA. Oncogene 22, 5712-5715.
Torchilin, V.P., Iakoubov, L.Z. and Estrov, Z. (2001). Antinuclear autoantibodies as potential antineoplastic agents. Trends Immunol 22, 424-427.
Townsend, S.E. and Allison, J.P. (1993). Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 259, 368-370.
Trinchieri, G. (1989). Biology of natural killer cells. Adv Immunol 47, 187-376.
Tzeng, T.C., Suen, J.L. and Chiang, B.L. (2006). Dendritic cells pulsed with apoptotic cells activate self-reactive T-cells of lupus mice both in vitro and in vivo. Rheumatology (Oxford) 45, 1230-1237.
Urban, J.L., Kripke, M.L. and Schreiber, H. (1986). Stepwise immunologic selection of antigenic variants during tumor growth. J Immunol 137, 3036-3041.
Verhasselt, V. and Goldman, M. (2001). From autoimmune responses to autoimmune disease: what is needed? J Autoimmun 16, 327-330.
Vujanovic, L., Ranieri, E., Gambotto, A., Olson, W.C., Kirkwood, J.M. and Storkus, W.J. (2006). IL-12p70 and IL-18 gene-modified dendritic cells loaded with tumor antigen-derived peptides or recombinant protein effectively stimulate specific Type-1 CD4+ T-cell responses from normal donors and melanoma patients in vitro. Cancer Gene Ther 13, 798-805.
Wang, B., He, J., Liu, C. and Chang, L.J. (2006). An effective cancer vaccine modality: lentiviral modification of dendritic cells expressing multiple cancer-specific antigens. Vaccine 24, 3477-3489.
Wang, X., Zheng, J., Liu, J., Yao, J., He, Y., Li, X., Yu, J., Yang, J., Liu, Z. and Huang, S. (2005). Increased population of CD4(+)CD25(high), regulatory T cells with their higher apoptotic and proliferating status in peripheral blood of acute myeloid leukemia patients. Eur J Haematol 75, 468-476.
Wei, S., Kryczek, I., Edwards, R.P., Zou, L., Szeliga, W., Banerjee, M., Cost, M., Cheng, P., Chang, A., Redman, B., Herberman, R.B. and Zou, W. (2007). Interleukin-2 administration alters the CD4+FOXP3+ T-cell pool and tumor trafficking in patients with ovarian carcinoma. Cancer Res 67, 7487-7494.
Wu, Y., Borde, M., Heissmeyer, V., Feuerer, M., Lapan, A.D., Stroud, J.C., Bates, D.L., Guo, L., Han, A., Ziegler, S.F., Mathis, D., Benoist, C., Chen, L. and Rao, A. (2006). FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375-387.
Xia, D., Moyana, T. and Xiang, J. (2006). Combinational adenovirus-mediated gene therapy and dendritic cell vaccine in combating well-established tumors. Cell Res 16, 241-259.
Yamanaka, R., Yajima, N., Tsuchiya, N., Honma, J., Tanaka, R., Ramsey, J., Blaese, M. and Xanthopoulos, K.G. (2002). Administration of interleukin-12 and -18 enhancing the antitumor immunity of genetically modified dendritic cells that had been pulsed with Semliki forest virus-mediated tumor complementary DNA. J Neurosurg 97, 1184-1190.
Yang, S.C., Batra, R.K., Hillinger, S., Reckamp, K.L., Strieter, R.M., Dubinett, S.M. and Sharma, S. (2006). Intrapulmonary administration of CCL21 gene-modified dendritic cells reduces tumor burden in spontaneous murine bronchoalveolar cell carcinoma. Cancer Res 66, 3205-3213.
Yano, H., Ishida, T., Inagaki, A., Ishii, T., Kusumoto, S., Komatsu, H., Iida, S., Utsunomiya, A. and Ueda, R. (2007). Regulatory T-cell function of adult T-cell leukemia/lymphoma cells. Int J Cancer 120, 2052-2057.
Zhang, S., Zeng, G., Wilkes, D.S., Reed, G.E., McGarry, R.C., Eble, J.N. and Cheng, L. (2003). Dendritic cells transfected with interleukin-12 and pulsed with tumor extract inhibit growth of murine prostatic carcinoma in vivo. Prostate 55, 292-298.
Zhang, W., Yang, H., Zeng, H. and Chen, Z. (2002). [Induction of Th1 immune response against tumor by genetically engineered fusion of tumor cells and dendritic cells]. Zhonghua Xue Ye Xue Za Zhi 23, 61-64.
Zhang,
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40206-
dc.description.abstract白血病是發生在白血球的癌化現象,有別於其他的腫瘤,血癌細胞隨著血流遍佈全身不易成為治療標的,而且容易造成癌細胞轉移(metastasis)到其他組織器官,使得臨床上治療較為困難。 RL ♂1 是一株T 細胞淋巴癌(T cell leukemia),會表現CD4、CD25、IL-10及TGF-β,篩選自放射線誘發癌症的BALB/c小鼠,我們發現 RL ♂1 會表現Foxp3,並具有許多特性和調節性T細胞(regulatory T cell, Treg cells)類似, 本論文利用 RL ♂1 細胞株建立白血病的小鼠動物模式,來研究探討白血病生成的可能機轉,並試圖從已知的致病機轉中找出可行的輔助治療方式。 第一部份的研究中,以RL ♂1 的細胞碎片予樹突細胞(dendritic cells,DCs)吞食後,再利用腺病毒載體(adenoviral vector),將介白質12(interleukin 12,IL-12)送入樹突細胞中,來改善以樹突細胞為基礎的腫瘤免疫療法。 將同時呈現腫瘤抗原和表現介白質12的樹突細胞, 打入白血病小鼠體內發現,第40天以後的存活率仍有75%,優於只用腫瘤細胞碎片或是介白質12改造的樹突細胞治療的對照組,存活率分別為33%及50%。體外細胞實驗(in vitro)證實, 腫瘤抗原和介白質12改造過的樹突細胞治療的腫瘤鼠所誘發的毒殺型T細胞的活性高於對照組,利用抗體將CD8+ T 細胞去除之後,並看不到此樹突細胞所誘發前述的保護效果,實驗結果說明了, 同時呈現腫瘤抗原和表現介白質12的樹突細胞能誘發較佳的抗腫瘤免疫反應,同時也優於傳統的以樹突細胞為基礎的免疫療法。許多實驗證實,樹突細胞會誘發自體免疫反應,我們的實驗結果也發現,以樹突細胞誘發出抗腫瘤的效應,同時也會產生高量的抗雙股螺旋去氧核糖核酸抗體(anti-ds DNA antibody)。流式細胞儀分析中發現,抗雙股螺旋去氧核糖核酸單株抗體(monoclonal antibody),能夠辨認腫瘤細胞的表面分子,體外實驗也發現,此抗體有能力透過補體反應將腫瘤細胞摧毀。直接用此單株抗體打入腫瘤小鼠體內,也可觀察到腫瘤的生長速率有意義地變慢。 本實驗結果認為,自體抗體可達到抑制腫瘤的效果,而自體抗體結合腫瘤細胞上的哪個分子,以及是否會引發其他的反應,則須進一步的研究。
本論文的第二部份在探討淋巴癌細胞在體內生成的可能原因,以及從可能的生成機制中尋找適當的治療方式 。實驗中發現, 表現Foxp3的RL ♂1 T細胞淋巴癌在體外培養幾代之後,失去了表現Foxp3的能力,也無法在正常的老鼠皮下生成腫瘤。體外實驗發現,失去表現Foxp3能力的腫瘤細胞,同時也失去了抑制T細胞分裂的能力,有趣的是,這些細胞在經過老鼠腹腔培養後(in vivo passage),皮下生成腫瘤和體外抑制T細胞分裂的能力都恢復了,這些實驗結果認為, 腫瘤細胞的生成能力,Foxp3可能扮演極為重要的角色。利用Lentivirus 轉殖系統(transduction system),將Foxp3的微干擾核糖核酸(siRNA)送入腫瘤細胞後, Foxp3的表現被抑制了,同時種植在老鼠皮下的腫瘤生長速度明顯降低,而且對於用ConA刺激後的CD4+CD25-T細胞分裂能力的抑制效果也較未轉殖Fxop3微干擾核糖核酸的腫瘤細胞,低三倍之多,當直接將Lentivirus Foxp3的微干擾核糖核酸注入老鼠的皮下腫瘤位置,腫瘤的生長速度也明顯地被抑制了。實驗數據證實了,利用微干擾核塘核酸抑制T細胞淋巴癌的Foxp3基因表現,也有效地抑制了癌細胞的生長。
本論文實驗中,利用腫瘤細胞碎片和IL-12改造的樹突細胞誘發出有效的抗腫瘤免疫反應,也發現樹突細胞所誘發的自體免疫反應可以抑制腫瘤生長。同時實驗結果顯示,Foxp3參與腫瘤的生成過程,我們利用Lentivirus Foxp3的微干擾核糖核酸減低腫瘤細胞抑制免疫系統的能力,來避免免疫系統被腫瘤細胞抑制並攻擊腫瘤的生成, 雖然尚有許多的機制有待釐清,但已初步獲得正面的治療效果, 希望這些實驗結果對於未來在白血病的臨床治療上能有所助益。
zh_TW
dc.description.abstractLeukemia is a cancer of white blood cells that are disseminated by blood circulation. Because their features differ from solid tumors, leukemia cells metastasize to other tissues and organs more easily through the blood or lymphatic systems. RL ♂1 cell, which expressed CD4, CD25, IL-10, TGF-b and also expressed Foxp3, is a regulatory T cell (Treg)-like leukemia cell line. In this study, we established a murine model of leukemia with RL ♂1 to study the pathogenic mechanism of leukemia and intend to look for applicable approaches for cancer therapy. In the part I of the studies, we tried to improve conventional dendritic cells (DCs) based immunotherapy by administering engineered DCs that transduced with adenoviral vector expressing IL-12 (AdIL-12) pulsed with tumor cell lysate (TCL). Tumor mice treated with engineered DCs had a longer survival rate of 75% at day forty significantly improved the survival rate, 33% and 50%, of tumor mice treated with DCs pulsed with TCL alone or transduced with AdIL-12 respectively. In addition, IL-12 transduced and TCL pulsed DCs treated mice had higher CTL response compared to that of control group. Depletion of CD8+ T cells with specific antibodies abrogated the protective effects in tumor mice with DCs treatment. The results suggested that IL-12 gene modified DCs pulsed with TCL can stimulate immune response against tumor better than conventional DCs based tumor immunotherapy in animal model of leukemia. However, many studies have shown that DC-based tumor vaccines in animal tumor models can inhibit tumor growth and induce autoantibodies transiently. In this study, anti-ds DNA monoclonal antibodies recognized RL ♂1 cells but not normal cells by FACs analysis. The autoantibodies were demonstrated to lyse tumor cells via complement-mediated reaction in vitro and also exhibit the antitumor effects when the antibody was injected into tumor implanted mice. The data suggested that autoantibodies exert anti-tumor activity in vivo. In the future, it would be important to clarify the surface molecule of tumor recognized by autoantibody induced by DCs.
The second part of the thesis discussed the mechanism of leukemia development in vivo and tried to explore adequate solution for cancer therapy. The data suggested that RL ♂1 cells lost Foxp3 expression and the ability of tumor growth simultaneously when subcutaneously transplanted into mice after in vitro culture for several generations. Interestingly, the phenomenon could be rescued or reversed after in vivo passage in the peritoneal cavity of mice. In addition, we transfer Foxp3 siRNA into tumor cells using lentiviral transduction system to inhibit Foxp3 expression. With infection of Lenti-Foxp3-siRNA in RL ♂ 1 cells, Foxp3 gene expression was abrogated and decreased the suppressive function to CD4+CD25- effector cells stimulated with ConA. Furthermore, lentiviral-mediated Foxp3 RNAi transduced into RL ♂ 1 cell or intratumoral injection of Lenti-Foxp3 siRNA showed suppressive effects of tumor growth and prolonged the survial time of tumor-transplanted mice. These results suggested that inhibition of Foxp3 gene expression by shRNAs effectively decreased tumor growth of regulatory T cell-like leukemia.
In the study, engineered DCs activate specific immune response and produce autoantibodies inhibit tumor growth. In addition, Lenti-Foxp3-siRNA abrogates the chance of tumor to escape from immunosurveillance system. The studies in the thesis might provide a novel strategy for future clinical immunotherapy of leukemia
en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:42:38Z (GMT). No. of bitstreams: 1
ntu-97-D87449003-1.pdf: 6369885 bytes, checksum: c9146a8c161691096954d18d53f4672d (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents論文口試委員會審定書…………………………………………………i
誌謝………………………………………………………………………i
中文摘要 ……………………………………………………………iii
ABSTRACT ………………………………………………………………v
ABBREVIATIONS………………………………………………………vii
CONTENTS………………………………………………………………ix
CONTENTS OF FIGURES………………………………………………xii
CHAPTER I : General Introduction…………………………………………… 1
1.1 An overview of leukemia………………………………………2
1.2 The immune responses of tumor………….…………………2
1.2.1 Tumor antigens………………………………………………2
1.2.2 Anti-tumor immune responses ……………………………4
1.2.3 The mechanisms of tumor escape from immunosurveillance ………………………………………6
1.2.4 Dendritic cells………………………………………………7
1.2.4.1 The function of DCs……………………………………..7
1.2.4.2 DCs in cancer therapy…………………………………..8
1.3 Tumor immunotherapy …………………………………………8
1.3.1 Enhance tumor antigen presentation……… ……………8
1.3.2 Increase MHC I molecule expression of tumor cells…9
1.3.3 Avert T cells anergy………………………………………9
1.4 Aims of the study……………………………………………10
PART I Dendritic cells based tumor immunotherapy……11
CHAPTER II : Treatment application of interleukin-12 expressing dendritic cells in the murine model of leukemia2.1 Introduction…………………………………………………………13
2.2 Materials and Methods…………………………………………14
2.3Results……………………………………………………………18
2.4Discussion…………………………………………………………22
CHAPTER III : Autoimmune response induced by dendritic cells exerts anti-tumor effect
3.1 Introduction…………………………………………………..26
3.2 Materials and Methods…………………………………………27
3.3 Results……………………………………………………………30
3.4 Discussion………………………………………………………34
Part II The role of Foxp3 in leukemia development
CHAPTER IV : The critical role of the Foxp3 gene in the tumorgenesis of regulatory T cell-like leukemia4.1 Introduction……………………………………………………39
4.2 Materials and Methods…………………………………….41
4.3 Results…………………………………………………………43
4.4 Discussion………………………………………………………45
CHAPTER V. Lentiviral-mediated Foxp3 RNAi supresses tumor growth of regulatory T cell-like leukemia in a murine tumor model5.1 Introduction…………………………………………………………50
5.2 Materials and Methods…………………………………………52
5.3 Results…………………………………………………………..56
5.4 Discussion……………………………………………………...58
CHAPTER VI : Conclusion and Perspectives
Figures and Legends
References
Appendix
dc.language.isoen
dc.subject腺病毒zh_TW
dc.subject白血病zh_TW
dc.subject樹突細胞zh_TW
dc.subject介白質12zh_TW
dc.subjectLentivirusen
dc.subjectLeukemiaen
dc.subjectDendritic cellsen
dc.subjectIL-12en
dc.subjectAdenovirusen
dc.subjectRL ♂1en
dc.subjectFoxp3en
dc.title白血病小鼠動物模式的腫瘤發生機轉和治療研發的研究zh_TW
dc.titleStudy on the tumorgenesis and therapeutic approaches in a murine model of leukemiaen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.oralexamcommittee何弘能(Hong-Nerng Ho),胡承波(Cheng-Po Hu),李建國(Chen-Kuo Lee),繆希椿(S-C Miaw)
dc.subject.keyword白血病,樹突細胞,介白質12,腺病毒,zh_TW
dc.subject.keywordLeukemia,Dendritic cells,IL-12,Adenovirus,RL ♂1,Foxp3,Lentivirus,en
dc.relation.page145
dc.rights.note有償授權
dc.date.accepted2008-08-01
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
6.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved