請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3979完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林美峰(Mei-Fong Lin) | |
| dc.contributor.author | Stephanie Chen | en |
| dc.contributor.author | 陳雪羚 | zh_TW |
| dc.date.accessioned | 2021-05-13T08:39:38Z | - |
| dc.date.available | 2021-03-14 | |
| dc.date.available | 2021-05-13T08:39:38Z | - |
| dc.date.copyright | 2016-03-14 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-02-14 | |
| dc.identifier.citation | 中華民國養雞協會。2016。http://www.poultry.org.tw。
王勝德、李免蓮、林正鏞、施柏齡、徐阿里、潘金木。1999。家禽營養分需要量手冊-土雞、鴨、鵝。行政院農業委員會畜產試驗所專輯。 行政院農業委員會。2010年。土雞產業之輔導成果及展望。農政與農情月刊。http://www.coa.gov.tw/view.php?catid=22223。 行政院農業委員會。2014年。農業統計年報,第122-125、160-161頁。行政院農業委員會,臺北市。 李淵百。2005。臺灣土雞的育種改良與產業趨勢。農業生技產業季刊 2:5-11。 吳春利。2001。畜牧學實習(飼料分析)。合記圖書出版社,臺北市。 林瑞蓬、魏恒巍、金悅祖、林美峰。2015。進口飼料玉米來源及儲存對其營養素及黴菌毒素含量之影響。中畜會誌 44(3):182-201。 胡家寧。2007。臺灣地區土雞生產性能分析。碩士論文。國立臺灣大學動物科學技術學研究所,臺北市。 財政部關務署。2015。統計資料庫查詢系統。https://portal.sw.nat.gov.tw/APGA/GA01。 劉振軒、柯逸僊、張文發、祝治平、王綉真。1996。組織病理染色技術與圖譜。田和資訊科技股份有限公司,臺北市。 衛生福利部食品藥物管理署。2013。食品中黴菌毒素檢驗方法-脫氧雪腐鐮刀菌烯醇之檢驗。署授食字第0951800007號公告。 Amador, P., J. García‐Herrera, M. Marca, J. de La Osada, S. Acín, M. Navarro, M. Salvador, M. Lostao, and M. Rodríguez‐Yoldi. 2007. Inhibitory effect of TNF‐α on the intestinal absorption of galactose. J. Cell. Biochem. 101: 99-111. Amador, P., M. C. Marca, J. García-Herrera, M. P. Lostao, N. Guillén, J. de la Osada, and M. Rodríguez-Yoldi. 2008. Lipopolysaccharide induces inhibition of galactose intestinal transport in rabbits in vitro. Cell. Physiol. Biochem. 22: 715-724. Amasheh, S., T. Schmidt, M. Mahn, P. Florian, J. Mankertz, S. Tavalali, A. H. Gitter, J. D. Schulzke, and M. Fromm. 2005. Contribution of claudin-5 to barrier properties in tight junctions of epithelial cells. Cell Tissue Res. 321: 89-96. Antonissen, G., F. Van Immerseel, F. Pasmans, R. Ducatelle, F. Haesebrouck, L. Timbermont, M. Verlinden, G. Janssens, M. Eeckhout, and S. De Saeger. 2013. Deoxynivalenol predisposes for necrotic enteritis by affecting the intestinal barrier in broilers. Pages 9-10 in Proc. Int. Poult. Sci Forum., Atlanta, Georgia, USA. Awad, W. A., J. Böhm, E. Razzazi‐Fazeli, and J. Zentek. 2006a. Effects of feeding deoxynivalenol contaminated wheat on growth performance, organ weights and histological parameters of the intestine of broiler chickens. J. Anim. Physiol. An. N. 90: 32-37. Awad, W. A., J. Böhm, E. Razzazi-Fazeli, K. Ghareeb, and J. Zentek. 2006b. Effect of addition of a probiotic microorganism to broiler diets contaminated with deoxynivalenol on performance and histological alterations of intestinal villi of broiler chickens. Poultry Sci. 85: 974-979. Awad, W. A., W. Vahjen, J. R. Aschenbach, and J. Zentek. 2011a. A diet naturally contaminated with the Fusarium mycotoxin deoxynivalenol (DON) downregulates gene expression of glucose transporters in the intestine of broiler chickens. Livest. Sci. 140: 72-79. Awad, W. A., M. Hess, M. Twaruzek, J. Grajewski, R. Kosicki, J. Böhm, and J. Zentek. 2011b. The impact of the Fusarium mycotoxin deoxynivalenol on the health and performance of broiler chickens. Int. J. Mol. Sci. 12: 7996-8012. Awad, W. A., K. Ghareeb, and J. Böhm. 2012. The toxicity of Fusarium mycotoxin deoxynivalenol in poultry feeding. World. Poultry Sci. J. 68: 651-667. Awad, W. A., K. Ghareeb, J. Böhm, and J. Zentek. 2013. The toxicological impacts of the Fusarium mycotoxin, deoxynivalenol, in poultry flocks with special reference to immunotoxicity. Toxins 5: 912-925. Awad, W. A., K. Ghareeb, A. Dadak, M. Hess, and J. Böhm. 2014. Single and combined effects of deoxynivalenol mycotoxin and a microbial feed additive on lymphocyte DNA damage and oxidative stress in broiler chickens. PLoS One 9: e88028. Bergsjo, B., O. Herstad, and I. Nafstad. 1993. Effects of feeding deoxynivalenol‐contaminated oats on reproduction performance in white Leghorn hens. Br. Poult. Sci. 34: 147-159. Bhat, R., R. V. Rai, and A. Karim. 2010. Mycotoxins in food and feed: Present status and future concerns. Compr. Rev. Food Sci. F. 9: 57-81. Birgegård, G., M. S. Aapro, C. Bokemeyer, M. Dicato, P. Drings, J. Hornedo, M. Krzakowski, H. Ludwig, S. Pecorelli, and H. J. Schmoll. 2005. Cancer-related anemia: Pathogenesis, prevalence and treatment. Oncology 68: 3-11. Bryden, W. L. 2012. Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Anim. Feed Sci. Tech. 173: 134-158. CEC. 2006. Commission recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off. J. Eur. Union 229: 7-9. Chowdhury, S. R., and T. K. Smith. 2005. Effects of feeding grains naturally contaminated with Fusarium mycotoxins on hepatic fractional protein synthesis rates of laying hens and the efficacy of a polymeric glucomannan mycotoxin adsorbent. Poultry Sci. 84: 1671-1674. Collins, M. M., A. I. Baumholtz, and A. K. Ryan. 2013. Claudin family members exhibit unique temporal and spatial expression boundaries in the chick embryo. Tissue barriers 1: e24517. Dänicke, S., S. Matthes, I. Halle, K. H. Ueberschär, S. Döll, and H. Valenta. 2003. Effects of graded levels of Fusarium toxin-contaminated wheat and of a detoxifying agent in broiler diets on performance, nutrient digestibility and blood chemical parameters. Br. Poult. Sci. 44: 113-126. Dänicke, S., H. Valenta, T. Goyarts, E. Razzazi-Fazeli, and J. Böhm. 2004a. On the effects of increasing deoxynivalenol (DON) concentrations in pig feed on growth performance and utilization of nutrients and on DON metabolism. J. Anim. Feed Sci. 13: 539-556. Dänicke, S., K. H. Ueberschär, H. Valenta, S. Matthes, K. Matthäus, and I. Halle. 2004b. Effects of graded levels of Fusarium toxin-contaminated wheat in Pekin duck diets on performance, health and metabolism of deoxynivalenol and zearalenone. Br. Poult. Sci. 45: 264-272. Dänicke, S., K. P. Brüssow, H. Valenta, K. H. Ueberschär, U. Tiemann, and M. Schollenberger. 2005a. On the effects of graded levels of Fusarium toxin contaminated wheat in diets for gilts on feed intake, growth performance and metabolism of deoxynivalenol and zearalenone. Mol. Nutr. Food Res. 49: 932-943. Dänicke, S., K. Matthäus, P. Lebzien, H. Valenta, K. Stemme, K. H. Ueberschär, E. Razzazi‐Fazeli, J. Böhm, and G. Flachowsky. 2005b. Effects of Fusarium toxin‐contaminated wheat grain on nutrient turnover, microbial protein synthesis and metabolism of deoxynivalenol and zearalenone in the rumen of dairy cows. J. Anim. Physiol. An. N. 89: 303-315. Dänicke, S., H. Valenta, and S. Matthes. 2007a. On the interactions between Fusarium toxin-contaminated wheat and nonstarch polysaccharide hydrolyzing enzymes in diets of broilers on performance, intestinal viscosity, and carry-over of deoxynivalenol. Poultry Sci. 86: 291-298. Dänicke, S., H. Valenta, K. H. Ueberschär, and S. Matthes. 2007b. On the interactions between Fusarium toxin-contaminated wheat and nonstarch polysaccharide hydrolyzing enzymes in turkey diets on performance, health and carry-over of deoxynivalenol and zearalenone. Br. Poult. Sci. 48: 39-48. Dänicke, S., K. P. Brüssow, T. Goyarts, H. Valenta, K. H. Ueberschär, and U. Tiemann. 2007c. On the transfer of the Fusarium toxins deoxynivalenol (DON) and zearalenone (ZON) from the sow to the full-term piglet during the last third of gestation. Food Chem. Toxicol. 45: 1565-1574. Dänicke, S., M. Beyer, G. Breves, H. Valenta, and H. U. Humpf. 2010. Effects of oral exposure of pigs to deoxynivalenol (DON) sulfonate (DONS) as the non-toxic derivative of DON on tissue residues of DON and de-epoxy-DON and on DONS blood levels. Food Addit. Contam. 27: 1558-1565. Dänicke, S., and U. Brezina. 2013. Kinetics and metabolism of the Fusarium toxin deoxynivalenol in farm animals: Consequences for diagnosis of exposure and intoxication and carry over. Food Chem. Toxicol. 60: 58-75. Darzynkiewicz, Z., and H. Zhao. 2011. Detection of DNA strand breaks in apoptotic cells by flow-and image-cytometry. Methods Mol. Biol. 682: 91-101. Dobson, P. D., K. Lanthaler, S. G. Oliver, and D. B. Kell. 2009. Implications of the dominant role of transporters in drug uptake by cells (supplementary material). Curr. Top. Med. Chem. 9: 163-181. Döll, S., T. Goyarts, U. Tiemann, and S. Dänicke. 2007. Practically relevant concentrations of deoxynivalenol in diets for growing-finishing pigs offered as mash or pellets. Arch. Anim. Nutr. 61: 247-265. Döll, S., S. Dänicke, and H. Valenta. 2008. Residues of deoxynivalenol (DON) in pig tissue after feeding mash or pellet diets containing low concentrations. Mol. Nutr. Food Res. 52: 727-734. Döll, S., J. A. Schrickx, S. Dänicke, and J. Fink-Gremmels. 2009. Deoxynivalenol-induced cytotoxicity, cytokines and related genes in unstimulated or lipopolysaccharide stimulated primary porcine macrophages. Toxicol. Lett. 184: 97-106. Drochner, W., M. Schollenberger, H. P. Piepho, S. Götz, U. Lauber, M. Tafaj, F. Klobasa, U. Weiler, R. Claus, and M. Steffl. 2004. Serum IgA-promoting effects induced by feed loads containing isolated deoxynivalenol (DON) in growing piglets. J. Toxicol. Env. Heal. A 67: 1051-1067. Egbeyale, L., S. Abiola, O. Sogunle, and M. Ozoje. 2011. Effect of egg size and strain on growth performance of cockerel. Agric. Biol. J. N. Am. 2: 1445-1453. Eriksen, G. S., and H. Pettersson. 2004. Toxicological evaluation of trichothecenes in animal feed. Anim. Feed Sci. Tech. 114: 205-239. FAO/WHO, 1989. Evaluation of certain veterinary drug residues in food (Thirty-fourth report of the Joint FAO/WHO Expert Committee on Food Additives). World Health Organization (WHO) Technical Report Series, Geneva, p. 788. Food and Agricultural Materials Inspection Center. 2010. Regulation value of pesticides, heavy metals and mycotoxins (administrative guidline). http://www.famic.go.jp/ffis/feed/r_safety/r_feeds_safety22.html#mycotoxins Förster, C. 2008. Tight junctions and the modulation of barrier function in disease. Histochem. Cell Biol. 130: 55-70. Frankič, T., T. Pajk, V. Rezar, A. Levart, and J. Salobir. 2006. The role of dietary nucleotides in reduction of DNA damage induced by T-2 toxin and deoxynivalenol in chicken leukocytes. Food Chem. Toxicol. 44: 1838-1844. Gamage, N., A. Barnett, N. Hempel, R. G. Duggleby, K. F. Windmill, J. L. Martin, and M. E. McManus. 2006. Human sulfotransferases and their role in chemical metabolism. Toxicol. Sci. 90: 5-22. Ghareeb, K., W. A. Awad, and J. Böhm. 2012. Ameliorative effect of a microbial feed additive on infectious bronchitis virus antibody titer and stress index in broiler chicks fed deoxynivalenol. Poultry Sci. 91: 800-807. Girish, C. K., T. K. Smith, H. J. Boermans, P. A. Kumar, and G. N. Girgis. 2010. Effects of dietary Fusarium mycotoxins on intestinal lymphocyte subset populations, cell proliferation and histological changes in avian lymphoid organs. Food Chem. Toxicol. 48: 3000-3007. González-Mariscal, L., E. Garay, and M. Quirós. 2011. Identification of claudins by western blot and immunofluorescence in different cell lines and tissues. Methods Mol. Biol. 762: 213-231. Goyarts, T., and S. Dänicke. 2006. Bioavailability of the Fusarium toxin deoxynivalenol (DON) from naturally contaminated wheat for the pig. Toxicol. Lett. 163: 171-182. Goyarts, T., N. Grove, and S. Dänicke. 2006a. Effects of the Fusarium toxin deoxynivalenol (DON) on protein synthesis, immunological parameters and DON-kinetics in the pig. Food Chem. Toxicol. 44: 1953-1965. Goyarts, T., S. Dänicke, U. Tiemann, and H. J. Rothkötter. 2006b. Effect of the Fusarium toxin deoxynivalenol (DON) on IgA, IgM and IgG concentrations and proliferation of porcine blood lymphocytes. Toxicol. in Vitro 20: 858-867. Goyarts, T., S. Dänicke, H. Valenta, and K. H. Ueberschär. 2007a. Carry-over of Fusarium toxins (deoxynivalenol and zearalenone) from naturally contaminated wheat to pigs. Food Addit. Contam. 24: 369-380. Goyarts, T., S. Dänicke, K. P. Brüssow, H. Valenta, K. H. Ueberschär, and U. Tiemann. 2007b. On the transfer of the Fusarium toxins deoxynivalenol (DON) and zearalenone (ZON) from sows to their fetuses during days 35–70 of gestation. Toxicol. Lett. 171: 38-49. Groschwitz, K. R., and S. P. Hogan. 2009. Intestinal barrier function: Molecular regulation and disease pathogenesis. J. Allergy Clin. Immun. 124: 3-20. Hamilton, R., B. Thompson, H. Trenholm, P. Fiser, and R. Greenhalgh. 1985a. Effects of feeding white Leghorn hens diets that contain deoxynivalenol (vomitoxin)-contaminated wheat. Poultry Sci. 64: 1840-1852. Hamilton, R., H. Trenholm, B. K. Thompson, and R. Greenhalgh. 1985b. The tolerance of white Leghorn and broiler chicks, and turkey poults to diets that contained deoxynivalenol (vomitoxin)-contaminated wheat. Poultry Sci. 64: 273-286. Harhaj, N. S., and D. A. Antonetti. 2004. Regulation of tight junctions and loss of barrier function in pathophysiology. Int. J. Biochem. Cell B. 36: 1206-1237. Harvey, R., L. Kubena, G. Rottinghaus, J. Turk, H. Casper, and S. Buckley. 1997. Moniliformin from Fusarium fujikuroi culture material and deoxynivalenol from naturally contaminated wheat incorporated into diets of broiler chicks. Avian Dis. 41: 957-963. He, K., H. R. Zhou, and J. J. Pestka. 2012a. Mechanisms for ribotoxin-induced ribosomal RNA cleavage. Toxicol. Appl. Pharm. 265: 10-18. He, K., H. R. Zhou, and J. J. Pestka. 2012b. Targets and intracellular signaling mechanisms for deoxynivalenol-induced ribosomal RNA cleavage. Toxicol. Sci. 127: 382-390. Hochleithner, M. 1994. Biochemistries. Page 223 in Avian medicine: Principles and application. B. W. Ritchie, G. J. Harrison, and L. R. Harrison, ed. Wingers, Lake Worth, FL. JECFA. 2001. Safety evaluation of certain mycotoxin in food. World Health Organization/FAO. Geneva. Kubena, L., S. Swanson, R. Harvey, O. Fletcher, L. Rowe, and T. Phillips. 1985. Effects of feeding deoxynivalenol (vomitoxin)-contaminated wheat to growing chicks. Poultry Sci. 64: 1649-1655. Kubena, L., R. Harvey, T. Phillips, G. Holman, and C. Creger. 1987. Effects of feeding mature white Leghorn hens diets that contain deoxynivalenol (vomitoxin). Poultry Sci. 66: 55-58. Kubena, L., and R. Harvey. 1988. Research note: Response of growing Leghorn chicks to deoxynivalenol-contaminated wheat. Poultry Sci. 67: 1778-1780. Kubena, L., T. Edrington, R. Harvey, S. Buckley, T. Phillips, G. Rottinghaus, and H. Casper. 1997. Individual and combined effects of fumonisin B1 present in Fusarium moniliforme culture material and T-2 toxin or deoxynivalenol in broiler chicks. Poultry Sci. 76: 1239-1247. Kushiro, M. 2008. Effects of milling and cooking processes on the deoxynivalenol content in wheat. Int. J. Mol. Sci. 9: 2127-2145. Li, Y., Z. Wang, R. C. Beier, J. Shen, D. D. Smet, S. De Saeger, and S. Zhang. 2011. T-2 toxin, a trichothecene mycotoxin: Review of toxicity, metabolism, and analytical methods. J. Agr. Food Chem. 59: 3441-3453. Li, Z., Z. B. Yang, W. R. Yang, S. J. Wang, S. Z. Jiang, and Y. B. Wu. 2012. Effects of feed-borne Fusarium mycotoxins with or without yeast cell wall adsorbent on organ weight, serum biochemistry, and immunological parameters of broiler chickens. Poultry Sci. 91: 2487-2495. Lun, A. K., L. G. Young, E. T. Moran, D. B. Hunter, and J. P. Rodriguez. 1986. Effects of feeding hens a high level of vomitoxin-contaminated corn on performance and tissue residues. Poultry Sci. 65: 1095-1099. Lun, A. K., E. T. Moran, L. G. Young, and E. G. McMillan. 1988. Disappearance of deoxynivalenol from digesta progressing along the chickens gastrointestinal-tract after intubation with feed containing contaminated corn. B. Environ. Contam. Tox. 40: 317-324. Lun, A. K., E. T. Moran, L. G. Young, and E. G. McMillan. 1989. Absorption and elimination of an oral dose of 3H-deoxynivalenol in colostomized and intact chickens. B. Environ. Contam. Tox. 42: 919-925. Malovrh, T., and B. Jakovac-Strajn. 2010. Feed contaminated with Fusarium toxins alter lymphocyte proliferation and apoptosis in primiparous sows during the perinatal period. Food Chem. Toxicol. 48: 2907-2912. Maresca, M., R. Mahfoud, N. Garmy, and J. Fantini. 2002. The mycotoxin deoxynivalenol affects nutrient absorption in human intestinal epithelial cells. J. Nutr. 132: 2723-2731. Maresca, M., N. Yahi, L. Younès-Sakr, M. Boyron, B. Caporiccio, and J. Fantini. 2008. Both direct and indirect effects account for the pro-inflammatory activity of enteropathogenic mycotoxins on the human intestinal epithelium: Stimulation of interleukin-8 secretion, potentiation of interleukin-1β effect and increase in the transepithelial passage of commensal bacteria. Toxicol. Appl. Pharm. 228: 84-92. Maresca, M. 2013. From the gut to the brain: Journey and pathophysiological effects of the food-associated trichothecene mycotoxin deoxynivalenol. Toxins 5: 784-820. Markov, A. G., A. Veshnyakova, M. Fromm, M. Amasheh, and S. Amasheh. 2010. Segmental expression of claudin proteins correlates with tight junction barrier properties in rat intestine. J. Comp. Physiol. B 180: 591-598. Maul, R., B. Warth, J. S. Kant, N. H. Schebb, R. Krska, M. Koch, and M. Sulyok. 2012. Investigation of the hepatic glucuronidation pattern of the Fusarium mycotoxin deoxynivalenol in various species. Chem. Res. Toxicol. 25: 2715-2717. McCormick, S. P. 2013. Microbial detoxification of mycotoxins. J. Chem. Ecol. 39: 907-918. Mishra, S., P. D. Dwivedi, H. P. Pandey, and M. Das. 2014. Role of oxidative stress in deoxynivalenol induced toxicity. Food Chem. Toxicol. 72: 20-29. Morooka, N., N. Uratsuji, T. Yoshizawa, and H. Yamamoto. 1972. Studies on the toxic substances in barley infected with Fusarium spp. J. Food Hyg. Soc. Jpn. 13: 368-375. Morris, R., D. Hessels, and R. Bishop. 1968. The relationship between hatching egg weight and subsequent performance of broiler chickens. Br. Poult. Sci. 9: 305-315. Osselaere, A., M. Devreese, A. Watteyn, V. Vandenbroucke, J. Goossens, V. Hautekiet, M. Eeckhout, S. De Saeger, S. De Baere, and P. De Backer. 2012. Efficacy and safety testing of mycotoxin-detoxifying agents in broilers following the European Food Safety Authority guidelines. Poultry Sci. 91: 2046-2054. Osselaere, A., M. Devreese, J. Goossens, V. Vandenbroucke, S. De Baere, P. De Backer, and S. Croubels. 2013a. Toxicokinetic study and absolute oral bioavailability of deoxynivalenol, T-2 toxin and zearalenone in broiler chickens. Food Chem. Toxicol. 51: 350-355. Osselaere, A., R. Santos, V. Hautekiet, P. De Backer, K. Chiers, R. Ducatelle, and S. Croubels. 2013b. Deoxynivalenol impairs hepatic and intestinal gene expression of selected oxidative stress, tight junction and inflammation proteins in broiler chickens, but addition of an adsorbing agent shifts the effects to the distal parts of the small intestine. PLoS One 8: e69014. Øvernes, G., T. Matre, T. Sivertsen, H. Larsen, W. Langseth, L. Reitan, and J. Jansen. 1997. Effects of diets with graded levels of naturally deoxynivalenol‐contaminated oats on immune response in growing pigs. J. Vet. Med. A 44: 539-550. Ozden, O., B. L. Black, C. M. Ashwell, C. K. Tipsmark, R. J. Borski, and B. J. Grubb. 2010. Developmental profile of claudin‐3,‐5, and‐16 proteins in the epithelium of chick intestine. Anat. Rec. 293: 1175-1183. Pestka, J. J., M. A. Moorman, and R. L. Warner. 1989. Dysregulation of IgA production and IgA nephropathy induced by the trichothecene vomitoxin. Food Chem. Toxicol. 27: 361-368. Pestka, J. J., H. R. Zhou, Y. Moon, and Y. J. Chung. 2004. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: Unraveling a paradox. Toxicol. Lett. 153: 61-73. Pestka, J. J., and A. T. Smolinski. 2005. Deoxynivalenol: Toxicology and potential effects on humans. J. Toxicol. Env. Heal. B 8: 39-69. Pestka, J. J. 2008. Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Addit. Contam. 25: 1128-1140. Pestka, J. J. 2010a. Deoxynivalenol-induced proinflammatory gene expression: Mechanisms and pathological sequelae. Toxins 2: 1300-1317. Pestka, J. J. 2010b. Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance. Arch. Toxicol. 84: 663-679. Pinchasov, Y. 1991. Relationship between the weight of hatching eggs and subsequent early performance of broiler chicks. Br. Poult. Sci. 32: 109-115. Pinton, P., F. Accensi, E. Beauchamp, A. M. Cossalter, P. Callu, F. Grosjean, and I. P. Oswald. 2008. Ingestion of deoxynivalenol (DON) contaminated feed alters the pig vaccinal immune responses. Toxicol. Lett. 177: 215-222. Pinton, P., J. P. Nougayrede, J. C. Del Rio, C. Moreno, D. E. Marin, L. Ferrier, A. P. Bracarense, M. Kolf-Clauw, and I. P. Oswald. 2009. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression. Toxicol. Appl. Pharm. 237: 41-48. Pinton, P., and I. P. Oswald. 2014. Effect of deoxynivalenol and other type B trichothecenes on the intestine: A review. Toxins 6: 1615-1643. Pitman, R. S., and R. S. Blumberg. 2000. First line of defense: The role of the intestinal epithelium as an active component of the mucosal immune system. J. Gastroenterol. 35: 805-814. Prelusky, D. B., R. G. Gerdes, K. L. Underhill, B. A. Rotter, P. Y. Jui, and H. L. Trenholm. 1994. Effects of low‐level dietary deoxynivalenol on haematological and clinical parameters of the pig. Nat. Toxins 2: 97-104. Proudfoot, F., and H. Hulan. 1981. The influence of hatching egg size on the subsequent performance of broiler chickens. Poultry Sci. 60: 2167-2170. Proudfoot, F., H. Hulan, and K. McRae. 1982. Effect of hatching egg size from semi-dwarf and normal maternal meat parent genotypes on the performance of broiler chickens. Poultry Sci. 61: 655-660. Ren, Z., Y. Wang, H. Deng, Y. Deng, J. Deng, Z. Zuo, Y. Wang, X. Peng, H. Cui, and L. Shen. 2015. Deoxynivalenol induces apoptosis in chicken splenic lymphocytes via the reactive oxygen species-mediated mitochondrial pathway. Environ. Toxicol. Phar. 39: 339-346. Ricciardi, C., R. Castagna, I. Ferrante, F. Frascella, S. L. Marasso, A. Ricci, G. Canavese, A. Lorè, A. Prelle, and M. L. Gullino. 2013. Development of a microcantilever-based immunosensing method for mycotoxin detection. Biosens. Bioelectron. 40: 233-239. Ritter, J. K. 2000. Roles of glucuronidation and UDP-glucuronosyltransferases in xenobiotic bioactivation reactions. Chemi-Biol. Interact. 129: 171-193. Robbins, C. A., L. J. Swenson, M. L. Nealley, B. J. Kelman, and R. E. Gots. 2000. Health effects of mycotoxins in indoor air: A critical review. Appl. Occup. Environ. Hyg. 15: 773-784. Rodrigues, I., and K. Naehrer. 2012. A three-year survey on the worldwide occurrence of mycotoxins in feedstuffs and feed. Toxins 4: 663-675. Rotter, B. A. 1996. Invited review: Toxicology of deoxynivalenol (vomitoxin). J. Toxicol. Env. Heal. A 48: 1-34. Sabater, M., and N. Forbes. 2015. Avian haematology and biochemistry 2. Biochemistry. In Practice 37: 139-142. SCF. 2002. Opinion of the scientific committee on food on Fusarium toxins. Part 6: group evaluation of T-2 toxin, HT-2 toxin, nivalenol and deoxynivalenol. http://ec.europa.eu/food/fs/sc/scf/out123_en.pdf Schat, K. A., B. Kaspers, and P. Kaiser. 2014. Avian Immunology. 2nd ed. Academic Press, San Diego, CA. Schwartz-Zimmermann, H. E., P. Fruhmann, S. Dänicke, G. Wiesenberger, S. Caha, J. Weber, and F. Berthiller. 2015. Metabolism of deoxynivalenol and deepoxy-deoxynivalenol in broiler chickens, pullets, roosters and turkeys. Toxins 7: 4706-4729. Seeling, K., S. Dänicke, H. Valenta, H. Van Egmond, R. Schothorst, A. Jekel, P. Lebzien, M. Schollenberger, E. Razzazi-Fazeli, and G. Flachowsky. 2006. Effects of Fusarium toxin-contaminated wheat and feed intake level on the biotransformation and carry-over of deoxynivalenol in dairy cows. Food Addit. Contam. 23: 1008-1020. Shi, S. R., R. J. Cote, and C. R. Taylor. 1997. Antigen retrieval immunohistochemistry: Past, present, and future. J. Histochem. Cytochem. 45: 327-343. Sklan, D., S. Heifetz, and O. Halevy. 2003. Heavier chicks at hatch improves marketing body weight by enhancing skeletal muscle growth. Poultry Sci. 82: 1778-1786. Standardization Administration of the People’s Republic of China. 2007. Tolerance limits for deoxynivalenol in formula feed. GB13078.3-2007. Sugita-Konishi, Y., B. J. Park, K. Kobayashi-Hattori, T. Tanaka, T. Chonan, K. Yoshikawa, and S. Kumagai. 2006. Effect of cooking process on the deoxynivalenol content and its subsequent cytotoxicity in wheat products. Biosci. Biotechnol. Biochem. 70: 1764-1768. Sugiyama, K., M. Muroi, K. Tanamoto, M. Nishijima, and Y. Sugita-Konishi. 2010. Deoxynivalenol and nivalenol inhibit lipopolysaccharide-induced nitric oxide production by mouse macrophage cells. Toxicol. Lett. 192: 150-154. Swamy, H., T. Smith, E. MacDonald, H. Boermans, and E. Squires. 2002. Effects of feeding a blend of grains naturally contaminated with mycotoxins on swine performance, brain regional neurochemistry, and serum chemistry and the efficacy of a polymeric glucomannan mycotoxin adsorbent. J. Anim. Sci. 80: 3257-3267. Swamy, H., T. Smith, E. MacDonald, N. Karrow, B. Woodward, and H. Boermans. 2003. Effects of feeding a blend of grains naturally contaminated with mycotoxins on growth and immunological measurements of starter pigs, and the efficacy of a polymeric glucomannan mycotoxin adsorbent. J. Anim. Sci. 81: 2792-2803. Swamy, H., T. Smith, N. Karrow, and H. Boermans. 2004. Effects of feeding blends of grains naturally contaminated with Fusarium mycotoxins on growth and immunological parameters of broiler chickens. Poultry Sci. 83: 533-543. Swenberg, J. A., K. Lu, B. C. Moeller, L. Gao, P. B. Upton, J. Nakamura, and T. B. Starr. 2010. Endogenous versus exogenous DNA adducts: Their role in carcinogenesis, epidemiology and risk assessment. Toxicol. Sci. 120 Suppl. 1: S 130-145. Sypecka, Z., M. Kelly, and P. Brereton. 2004. Deoxynivalenol and zearalenone residues in eggs of laying hens fed with a naturally contaminated diet: Effects on egg production and estimation of transmission rates from feed to eggs. J. Agr. Food Chem. 52: 5463-5471. Tiemann, U., K. P. Brüssow, L. Jonas, R. Pöhland, F. Schneider, and S. Dänicke. 2006. Effects of diets with cereal grains contaminated by graded levels of two toxins on selected immunological and histological measurements in the spleen of gilts. J. Anim. Sci. 84: 236-245. Tiemann, U., and S. Dänicke. 2007. In vivo and in vitro effects of the mycotoxins zearalenone and deoxynivalenol on different non-reproductive and reproductive organs in female pigs: A review. Food Addit. Contam. 24: 306-314. Tiemann, U., K. P. Brüssow, D. Dannenberger, L. Jonas, R. Pöhland, K. Jager, S. Dänicke, and E. Hagemann. 2008a. The effect of feeding a diet naturally contaminated with deoxynivalenol (DON) and zearalenone (ZON) on the spleen and liver of sow and fetus from day 35 to 70 of gestation. Toxicol. Lett. 179: 113-117. Tiemann, U., K. P. Brüssow, U. Muchenmeister, L. Jonas, R. Pöhland, A. Reischauer, K. Jager, and S. Dänicke. 2008b. Changes in the spleen and liver of pregnant sows and full-term piglets after feeding diets naturally contaminated with deoxynivalenol and zearalenone. Vet. J. 176: 188-196. U.S. FDA. 2010. U.S. Advisory levels for deoxynivalenol (DON) in finished wheat products for human consumption and grains and grains by-products used for animal feed. http://www.fda.gov/food/guidanceregulation/guidancedocumentsregulatoryinformation/chemicalcontaminantsmetalsnaturaltoxinspesticides/ucm120184.htm Vandenbroucke, V., S. Croubels, A. Martel, E. Verbrugghe, J. Goossens, K. Van Deun, F. Boyen, A. Thompson, N. Shearer, and P. De Backer. 2011. The mycotoxin deoxynivalenol potentiates intestinal inflammation by Salmonella Typhimurium in porcine ileal loops. PLoS One 6: e23871. Vĕtvicka, V., and L. Fornůsek. 1987. Limitations of transmembrane transport in drug delivery. Crit. Rev. Ther. Drug 5: 141-170. Wan, D., L. L. Huang, Y. H. Pan, Q. H. Wu, D. M. Chen, Y. F. Tao, X. Wang, Z. L. Liu, J. Li, L. Y. Wang, and Z. H. Yuan. 2014. Metabolism, distribution, and excretion of deoxynivalenol with combined techniques of radiotracing, high-performance liquid chromatography ion trap time-of-flight mass spectrometry, and online radiometric detection. J. Agr. Food Chem. 62: 288-296. Wang, W., J. J. Ma, C. C. Yu, X. H. Lin, H. R. Jiang, B. Shao, and F. Q. Li. 2012. Simultaneous determination of masked deoxynivalenol and some important type B trichothecenes in Chinese corn kernels and corn-based products by ultra-performance liquid chromatography-tandem mass spectrometry. J. Agr. Food Chem. 60: 11638-11646. Whiting, T., and G. Pesti. 1984. Broiler performance and hatching egg weight to marketing weight relationships of progeny from standard and dwarf broiler dams. Poultry Sci. 63: 425-429. Wu, X., P. Murphy, J. Cunnick, and S. Hendrich. 2007. Synthesis and characterization of deoxynivalenol glucuronide: Its comparative immunotoxicity with deoxynivalenol. Food Chem. Toxicol. 45: 1846-1855. Wu, Q. H., X. Wang, W. Yang, A. Nussler, L. Y. Xiong, K. Kuca, V. Dohnal, X. J. Zhang, and Z. H. Yuan. 2014. Oxidative stress-mediated cytotoxicity and metabolism of T-2 toxin and deoxynivalenol in animals and humans: An update. Arch. Toxicol. 88: 1309-1326. Wyatt, C., W. Weaver, and W. Beane. 1985. Influence of egg size, eggshell quality, and posthatch holding time on broiler performance. Poultry Sci. 64: 2049-2055. Yegani, M., T. Smith, S. Leeson, and H. Boermans. 2006. Effects of feeding grains naturally contaminated with Fusarium mycotoxins on performance and metabolism of broiler breeders. Poultry Sci. 85: 1541-1549. Yoshizawa, T. 2013. Thirty-five years of research on deoxynivalenol, a trichothecene mycotoxin: with special reference to its discovery and co-occurrence with nivalenol in Japan. Food Safety 1: 12-31. Yu, H., T. Zhou, J. Gong, C. Young, X. Su, X. Z. Li, H. Zhu, R. Tsao, and R. Yang. 2010. Isolation of deoxynivalenol-transforming bacteria from the chicken intestines using the approach of PCR-DGGE guided microbial selection. BMC Microbiol. 10: 182. Yunus, A. W., K. Ghareeb, M. Twaruzek, J. Grajewski, and J. Böhm. 2012a. Deoxynivalenol as a contaminant of broiler feed: Effects on bird performance and response to common vaccines. Poultry Sci. 91: 844-851. Yunus, A. W., A. Blajet-Kosicka, R. Kosicki, M. Z. Khan, H. Rehman, and J. Böhm. 2012b. Deoxynivalenol as a contaminant of broiler feed: Intestinal development, absorptive functionality, and metabolism of the mycotoxin. Poultry Sci. 91: 852-861. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3979 | - |
| dc.description.abstract | 本研究旨在探討嘔吐毒素(deoxynivalenol, DON)對於臺灣土雞性能之影響。試驗使用208隻5日齡黑羽臺灣土雞,採公母混養並逢機分配至四個餵飼處理組,分別給飼含0、2、5及10 ppm嘔吐毒素濃度之飼糧。餵飼試驗為期16週並劃分成三期,分別為5-21日齡、22-70日齡及71-112日齡,於各期結束時進行採樣及犧牲。研究結果顯示,雖於第二期期間,5及10 ppm組之公和母雞體增重差距擴大,然試驗全期之生長表現並無顯著差異。血液生化值如血清天冬胺酸轉胺酶(aspartate transaminase, AST)、丙胺酸轉胺酶(alanine transaminase, ALT)、尿酸(uric acid, UA)及免疫球蛋白A(immunoglobulin, IgA)濃度並未受嘔吐毒素濃度影響,嘔吐毒素對於心臟及肝臟之相對重量亦無顯著影響,然於試驗結束時,餵飼5 ppm組雞隻之脾臟相對重量顯著較對照組增加(P < 0.05),而10 ppm組除母雞脾臟組織之增生細胞(proliferating cell nuclear antigen, PCNA)數目顯著減少,而公雞被促進增生外,其脾臟組織之細胞凋亡增加(TUNEL分析)及DNA損傷加劇(γ-H2AX)(P < 0.05)。在腸道方面,除5 ppm組有部分公雞之迴腸顯現絨毛異常短小的現象外,絨毛型態上各組間並沒有顯著差異。而在攸關腸道障壁之空腸緊密連接蛋白claudin-5的表現量上,2及5 ppm組之母雞呈顯著增加,然而公雞表現量則顯著被抑制(P < 0.05)。綜述論之,10 ppm以下嘔吐毒素汙染之飼糧對臺灣土雞生長性狀無顯著影響,然而本研究結果顯示,長期暴露於高濃度嘔吐毒素危害下,雞隻之免疫系統會被刺激,進而可能造成免疫器官的損傷,嘔吐毒素藉由調控緊密連接蛋白表現量以改變腸道障壁功能,而腸道障壁的毀損可能助長病原的入侵,進而提高雞隻對傳染性疾病之感受性。關於嘔吐毒素對家禽長期性的影響,仍需未來進行多方研究以更深入探討。 | zh_TW |
| dc.description.abstract | The objective of this study was to investigate the impact of deoxynivalenol (DON) on the growth performance of Taiwan country chickens. Two hundred and eight 5-d-old black-feathered Taiwan country chickens were randomly assigned to 4 treatments, 0, 2, 5 and 10 ppm DON. The experiment lasted for 16 weeks and was divided into three intervals, 5-21 d, 22-70 d, and 71-112 d. Results indicated that although the difference of body weight gain between male and female birds widened during the second phase in treatments fed diets containing high levels of DON, the overall growth performance was not significantly different. None of the blood biochemistry (serum ALT, AST, UA and IgA) responded to increased DON levels in the diet. DON had no adverse effects on relative organ weights except that relative weights of spleen in birds fed 5 ppm DON diet increased compared with that of controls (P < 0.05). Increasing proliferation (proliferating cell nuclear antigen, PCNA), higher levels of apoptosis (TUNEL assay), and DNA damage (γ-H2AX) were observed in immunohistochemistry of the spleen sections in 10 ppm DON treatment (P < 0.05), except that female birds had decreased proliferation index. There were no significant differences in intestinal morphology, whereas the length of villus in ileum tended to be shorter among birds fed diets containing low levels of DON. The expression of tight junction protein, claudin-5, increased in some female birds fed 2 and 5 ppm DON, while in male birds, it appeared to have decreased expression levels (P < 0.05). In conclusion, Taiwan country chickens seemed to possess high tolerance to DON contaminated diets. Nevertheless, our results show that DON may cause disturbance to the immune system and impair the barrier function of the intestine, leading to higher susceptibility to infectious disease. Further investigation on the long-term effect of DON is required to confirm these findings. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T08:39:38Z (GMT). No. of bitstreams: 1 ntu-105-R02626025-1.pdf: 3808974 bytes, checksum: d8550c9edc3bcda50692f5434cd71d03 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 謝 誌 I
摘 要 II ABSTRACT III 目 錄 IV 圖 次 VII 表 次 VIII 緒 言 1 壹、文獻回顧 2 一、嘔吐毒素之生成及汙染概況 2 (一)黴菌及黴菌毒素 3 (二)嘔吐毒素之普遍性 5 二、嘔吐毒素之毒性 8 (一)作用標的、病徵及機制 8 (二)代謝途徑及衍生物 17 三、家禽對嘔吐毒素之感受性 22 (一)家禽可能的代謝方式 23 (二)嘔吐毒素對家禽的影響 25 四、各國規範嘔吐毒素之限量標準 31 五、臺灣土雞簡介及產銷概況 33 貳、材料與方法 36 一、試驗設計 36 (一)試驗飼糧 36 (二)試驗動物 38 (三)犧牲及採樣 38 二、測定項目及分析方法 39 (一)飼料營養分析 39 (二)嘔吐毒素檢驗 40 (三)生長表現 41 (四)血液生化值 41 (五)內臟相對重量 41 (六)脾臟石蠟切片 41 (七)腸道冷凍切片 45 (八)緊密連接蛋白表現量之測定 45 三、統計分析 48 參、結果 49 一、飼糧嘔吐毒素濃度 49 二、動物試驗 50 (一)生長表現 50 (二)血液生化值 52 (三)內臟相對重量 53 (四)脾臟組織切片 55 (五)免疫組織化學染色 56 (六)腸道型態 60 (七)腸道緊密連接蛋白表現量 61 (八)嘔吐毒素於內部臟器之殘留量 63 肆、討論 64 一、嘔吐毒素對臺灣土雞之生長表現的影響 64 二、嘔吐毒素對臺灣土雞之血液生化值的影響 66 三、嘔吐毒素對臺灣土雞之免疫器官的影響 66 (一)內臟相對重量 66 (二)病理切片 67 (三)組織的增生、凋亡及DNA損傷 67 四、嘔吐毒素對臺灣土雞之腸道完整性的影響 71 (一)腸道型態 71 (二)腸道障壁 72 五、評估嘔吐毒素於臺灣土雞內部臟器之殘留 73 六、綜合討論 74 伍、結論 76 參考文獻 77 附 錄 91 小 傳 92 | |
| dc.language.iso | zh-TW | |
| dc.subject | 長期性影響 | zh_TW |
| dc.subject | 嘔吐毒素 | zh_TW |
| dc.subject | 臺灣土雞 | zh_TW |
| dc.subject | 生長性能 | zh_TW |
| dc.subject | 組織型態 | zh_TW |
| dc.subject | tissue morphology | en |
| dc.subject | long-term effect | en |
| dc.subject | deoxynivalenol | en |
| dc.subject | Taiwan country chicken | en |
| dc.subject | growth performance | en |
| dc.title | 嘔吐毒素對臺灣土雞性能之影響 | zh_TW |
| dc.title | The Impact of Deoxynivalenol on the Performance of
Taiwan Country Chickens | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 魏恒巍,劉?睿,王淑音 | |
| dc.subject.keyword | 嘔吐毒素,臺灣土雞,生長性能,組織型態,長期性影響, | zh_TW |
| dc.subject.keyword | deoxynivalenol,Taiwan country chicken,growth performance,tissue morphology,long-term effect, | en |
| dc.relation.page | 92 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2016-02-15 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf | 3.72 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
