Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 心理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39541
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳建中
dc.contributor.author"Jolly, Lok-Teng Sio"en
dc.contributor.author蕭洛婷zh_TW
dc.date.accessioned2021-06-13T17:31:16Z-
dc.date.available2012-07-18
dc.date.copyright2011-07-18
dc.date.issued2011
dc.date.submitted2011-07-08
dc.identifier.citationAnderson, B. L., &Nakayama, K. (1994). Toward a general theory of stereopsis: binocular matching, occluding contours, and fusion. Psychological Review, 101(3), 4141-445.
Barlow, H. B., & Reeves, B. C. (1979). The versatility and absolute efficiency of detecting mirror symmetry in random dot displays. Vision Research, 19(7), 783-793.
Bertone, A., & Faubert, J. (2002). The interactive effects of symmetry and binocular disparity on visual surface representation [Abstract]. Journal of Vision, 2, 94a.
Bruce, V. G., & Morgan, M. J. (1975). Violations of symmetry and repetition in visual patterns. Perception, 4, 239-249.
Carmody, D. P., Nodine, C. F., & Locher, P. J. (1977). Global detection of symmetry. Perceptual and Motor Skills, 45(3 Pt 2), 1267-73.
Corballis, M. C., & Roldan, C. E. (1975). Detection of symmetry as a function of angular orientation. Journal of Experimental Psychology: Human Perception and Performance, 1(3), 221-30.
Csatho, A., van der Vloed, G., & van der Helm, P. A. (2004). The force of symmetry revisited: symmetry-to-noise ratios regulate (a)symmetry effects. Acta Psychologica, 117(3), 233-50.
Dakin, S. C., & Hess, R. F. (1997). The spatial mechanisms mediating symmetry perception. Vision Research, 37 (20), 2915-30.
Dakin, S. C., & Watt, R. J. (1994). Detection of bilateral symmetry using spatial filters. Spatial Vision, 8(4), 393-413.
Gurnsey, R., Herbert, A. M., & Kenemy, J. (1998). Bilateral symmetry embedded in noise is detected accurately only at fixation. Vision Research, 38(23), 3795-803.
Julesz, B. (1960). Binocular depth perception of computer generated patterns. Bell Systems Technical Journal, 39, 1125-1162.
Julesz, B. (1966). Binocular disappearance of monocular symmetry. Science, 153, 658-675.
Julesz, B. (1971). Foundations of gestalt psychology. Harcourt Brace, New York.
Kohler, W. (1938). The place of value in a world of facts. New York: Liveright
Kontsevich, L. L., & Tyler, C. W. (1999). Bayesian adaptive estimation of psychometric slope and threshold. Vision Res, 39, 2729-2737.
Kuijer, J. d., Deregowski, J. B., & McGeorge, P. (2004). The influence of visual symmetry on the encoding of objects. Acta Psychologica, 116, 75-91.
Leyton, M. (1992). Symmetry, causality, mind. Cambridge, Massachusetts; London, England: MIT Press.
Locher, P. J., & Nodine, C. F. (1989). The perceptual value of symmetry. Perception & Psychophysics, 17, 475-484.
Locher, P., & Wagemans, J. (1993). The effects of element type and spatial grouping on symmetry detection. Perception, 22, 565-587.
Mach, E. (1886/1959). The analysis of sensations and the relation of the physical to the psychical. New York: Dover.
Mach, E. (1897). Contribution to the analysis of the sensations (C. M. Williams, Trans.). Chicago, IL: Open Court original work published in 1890.
Marr, D., & Poggio, T. (1976). Cooperative computation of stereo disparity. Science, New Series, 194(4262), 283-287.
Marr, D., & Poggio, T. (1979). A Computational Theory of Human Stereo Vision. Proceedings of the Royal Society of London. Series B, Biological Sciences, 204(1156), 301-328.
Marr, D. (1982). Vision. New York: W.H. Freeman & Company.
Nelson, J. I. (1975). Globality and stereoscopic fusion in binocular vision. Journal of Theoretical Biology, 49, 1-88.
Osorio, D. (1996). Symmetry detection by categorization of spatial phase, a model. Proceedings: Biological Sciences, 263, 105-110.
Pashler, H. (1990). Coordinate frame for symmetry detection and object recognition. Journal of Experimental Psychology: Human Perception and Performance, 16(1), 150-63.
Perkins, D. N. (1972). Visual discrimination between rectangular and nonrectangular parallelopipeds. Perception & Psychophysics, 12(5), 396-400.
Perkins, D. N. (1976). How good a bet is good form? Perception, 5 (4), 393-406.
Rainville, S. J., & Kingdom, F. A. (1999). Spatial-scale contribution to the detection of mirror symmetry in fractal noise. Journal of Optical Society of America Image Society Vision, 16(9), 2112-23.
Rainville, S. J., & Kingdom, F. A. (2000). The functional role of oriented spatial filters in the perception of mirror symmetry-psychophysics and modeling. Vision Research, 40(19), 2621-44.
Rainville, S. J., & Kingdom, F. A. (2002). Scale invariance is driven by stimulus density. Vision Research, 42(3), 351-67.
Scognamillo, R., Rhodes, G., Morrone, C., & Burr, D. (2003). A feature-based model of symmetry detection. Proceedings: Biological Sciences, 270(1525), 1727-33.
Tjan, B. S., & Liu, Z. (2005). Symmetry impedes symmetry discrimination. Journal of Vision, 5(10), 888-900.
Tyler, C. W., Hardage, L., & Miller, R. T. (1995). Multiple mechanisms for the detection of mirror symmetry. Spatial Vision, 9, 79-100.
Tyler, C. W., & McBride, B. (1997). The Morphonome image psychophysics software and a calibrator for Macintosh systems. Spatial Vision, 10, 479-484.
van der Helm, P. A., & Leeuwenberg, E. L. (1996). ‘‘Goodness of visual regularities: a nontransformational approach.’’ Psychological Research, 103(3), 429-56.
Vetter T, Poggio T (1994) Symmetric 3D objects are an easy case for 2D object recognition. Spatial Vision, 8(4), 443-53.
Wagemans, J. (1993). Skewed symmetry: a nonaccidental property used to perceive visual forms. Journal of Experimental Psychology: Human Perception & Performance, 19(2), 364-380.
Wagemans, J. (1995). Detection of visual symmetries. Spatial Vision, 9, 9-32.
Wenderoth, P. (1994). The salience of vertical symmetry. Perception, 23, 221-236.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39541-
dc.description.abstract要偵測一個對稱圖形,觀察者需要根據圖像中找出對稱軸左右兩個圖形的元素間的對應關係,這意味著在這些元素進行對應時,可能存在著知覺機制相互對應的一種關係。另外,人類在感知三維空間結構中的隨機點立體圖(RDS)時會有兩個知覺機制,這機制分別會抑制不同視差距(disparities)的隨機點和興奮同樣差距的隨機點。因此,我們將探討把對稱元素放到不同深度的結構時,是否會影響對稱性的偵測。實驗中的對稱圖形是根據垂直對稱軸所形成的,並由 0.19o × 0.19o 大小和0.5%密度的點所組成。我們利用2AFC的實驗方法,來測量受試者的一致性閾值(coherence threshold),亦即在目標圖形中,需要有多少的訊號點,才能使受試者在 偵測目標圖形的整體形狀時達到百分之七十五的正確率。我們所操弄的3D圖像是由左右圖形的視差距(disparity,最大0.228o)所產生的。結果顯示,在對稱圖形左右分為兩半的條件下,受試者的表現受到會抑制,但在斜面的條件下,受試者的表現卻與平面時沒有差別。而當對稱圖形是在傾斜,但在不同平面的條件下時,抑制情況又再次出現。另一方面,當對稱圖形與3D 空間結構一致時,受試者的表現則有促進的效果。我們的研究結果指出,在偵測對稱圖形時,「共面」及2D-3D空間對稱結構的「一致性」都是重要的決定因素。zh_TW
dc.description.abstractTo perceive a symmetric pattern, an observer needs to find correspondence between two image elements across the symmetric axis. It implies a correspondence relationship between perceptual mechanisms responding to these elements. To perceive a 3D structure in random dot stereogram (RDS), it is shown that perceptual mechanisms responding to different disparities would inhibit each other; and would excite the neighborhoods where the disparity varies smoothly except for a small fraction at the object boundaries. We thus investigated whether putting corresponding elements of a symmetric pattern at different depths would affect symmetry detection. The symmetry patterns consisted of dots (0.19o × 0.19o) occupying 0.5% density of the display. We measured the coherence threshold at 75% accuracy with 2AFC paradigm and manipulated the symmetric pattern rendered on different 3D configuration structures that were produced by the disparity (max 0.228o) between the left and the right eye images. The results show that the two-half plane had inhibited observer’s performance. The coherence threshold for symmetric pattern on a slant surface was similar to that on a frontoparallel plane, even though the depth of the two sides of the symmetric axis was different. The threshold increased dramatically when one side of the axis inclined toward the observer while the other side inclined away even though the depth difference between the two sides was the same as that in the slant condition. The threshold reduced on a hinge configuration whose joint coincide with the symmetry axis. Our result suggests that the co–planarity and the consistency of 2D symmetry pattern and 3D structure are important factors for symmetry detection.en
dc.description.provenanceMade available in DSpace on 2021-06-13T17:31:16Z (GMT). No. of bitstreams: 1
ntu-100-R98227101-1.pdf: 596805 bytes, checksum: 999ca2c24b4fc6c612c5650068b1edbd (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsTable of Content
Introduction 1
Method 8
Observers 8
Apparatus 8
Stimuli 9
Procedure 17
Results 19
Experiment 1A: Coplanar effect 19
Experiment 1B: Consistent effect 20
Experiment 2 22
Discussion 23
Conclusion 26
References 28
Appendix 36
dc.language.isoen
dc.subject形狀zh_TW
dc.subject3Dzh_TW
dc.subject2Dzh_TW
dc.subject對稱zh_TW
dc.subject結構zh_TW
dc.subject平面zh_TW
dc.subject深度zh_TW
dc.subject斜面zh_TW
dc.subjectdepthen
dc.subjectslanten
dc.subject3Den
dc.subject2Den
dc.subjectsymmetryen
dc.subjectconfigurationen
dc.subjectsurfaceen
dc.subjectshapeen
dc.title三度空間中平面結構對對稱偵測的影響zh_TW
dc.title3D Surface Configuration Modulated 2D Symmetry Detectionen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉素玲,黃淑麗,袁之琦
dc.subject.keyword3D,2D,對稱,結構,平面,深度,斜面,形狀,zh_TW
dc.subject.keyword3D,2D,symmetry,configuration,surface,depth,slant,shape,en
dc.relation.page36
dc.rights.note有償授權
dc.date.accepted2011-07-08
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept心理學研究所zh_TW
顯示於系所單位:心理學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
582.82 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved