請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39535
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉進賢 | |
dc.contributor.author | Ya-Hsuan Hung | en |
dc.contributor.author | 洪雅暄 | zh_TW |
dc.date.accessioned | 2021-06-13T17:31:06Z | - |
dc.date.available | 2012-07-25 | |
dc.date.copyright | 2011-07-25 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-08 | |
dc.identifier.citation | [1] M. Abu-Hilal, Forced vibration of Euler–Bernoulli beams by means of dynamic Green functions, Journal of Sound and Vibration 267 (2003) 191–207.
[2] B. Mehri; A. Davar; O. Rahmani, Dynamic Green function solution of beams under a moving load with different boundary conditions , Transaction B: Mechanical Engineering, Vol. 16, No. 3, pp. 273-279, Sharif University of Technology, June 2009. [3] M. A. Koplowa; A. Bhattacharyyaa; B. P. Mann, Closed form solutions for the dynamic response of Euler–Bernoulli beams with step changes in cross section, Journal of Sound and Vibration 295 (2006) 214–225. [4] Y.-J. Shin; J.-H. Yun, Transverse vibration of a uniform Euler-Bernoulli beam under varying axial force using differential transformation method, Journal of Mechanical Science and Technology (KSME Int. J.) 20 (2006) 191-196. [5] C.-S. Liu, Cone of non-linear dynamical system and group preserving schemes, International Journal of Non-Linear Mechanics 36 (2001) 1047-1068. [6] C.-W. Chang; C.-S. Liu, A new algorithm for direct and backward problems of heat conduction equation, International Journal of Heat and Mass Transfer 53 (2010) 5552–5569. [7] C.-S. Liu; C.-W. Chang, Novel methods for solving severely ill-posed linear equations system, Journal of Marine Science and Technology 17 (2009) 216-227. [8] C.-S. Liu; S. N. Atluri, A novel time integration method for solving a large system of non-linear algebraic equations, CMES: Computer Modeling in Engineering & Sciences 31 (2008) 71-83. [9] C.-S. Liu, A fictitious time integration method for two-dimensional quasilinear elliptic boundary value problems, CMES: Computer Modeling in Engineering & Sciences 33 (2008) 179-198. [10] C.-S. Liu, A fictitious time integration method for a quasilinear elliptic boundary value problem, defined in an arbitrary plane domain, CMC: Computers, Materials & Continua 11 (2009) 15-32. [11] C.-S. Liu, A fictitious time integration method for solving m-point boundary value problems, CMES: Computer Modeling in Engineering & Sciences 39 (2009) 125-154. [12] C.-C. Tsai; C.-S. Liu; W.-C. Yeih, Fictitious time integration method of fundamental solutions with Chebyshev polynomials for solving Poisson-type nonlinear PDEs, CMES: Computer Modeling in Engineering & Sciences 56 (2010) 131-151. [13] C.-S. Liu, The Lie-group shooting method for nonlinear two-point boundary value problems exhibiting multiple solutions, CMES: Computer Modeling in Engineering & Sciences 13 (2006) 149-163. [14] C.-S. Liu, The Lie-group shooting method for computing the generalized Sturm-Liouville problems. CMES: Computer Modeling in Engineering & Sciences 56 (2010) 85-112. [15] Y.-H. Li, Lie-group shooting method for identifying a moving boundary problem of heat conduction equation, Sciencepaper Online, http://www.paper.edu.cn. [16] C.-H. Huang, A non-linear inverse vibration problem of estimating the time-dependent stiffness coefficients by conjugate gradient method, International Journal for Numerical Methods in Engineering 50 (2001) 1545-1558. [17] C.-H. Huang; C.-C. Shih, An inverse problem in estimating simultaneously the time-dependent applied force and moment of an Euler-Bernoulli beam, CMES: Computer Modeling in Engineering & Sciences 21 (2007) 239-254. [18] C.-S. Liu, A Lie-group shooting method estimating nonlinear restoring force in a mechanical system. CMES: Computer Modeling in Engineering & Sciences 35 (2008) 157-180. [19] C.-S. Liu, Solving two typical inverse Stefan problems by using the Lie-group shooting method, International Journal of Heat and Mass Transfer 54 (2011) 1941–1949. [20] C.-S. Liu, A two-stage Lie-group shooting method (TSLGSM) to identify time-dependent thermal diffusivity, International Journal of Heat and Mass Transfer 53 (2010) 4876-4884. [21] http://en.wikipedia.org/wiki/Main_Page [22] S. Kubo, Inverse problem related to the mechanics and fracture of solids structures, JSME International Journal, Series 1, Vol. 31, No. 2, 1998. [23] Uri M.Ascher; R. M.M.Mattheij; R. D.Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equation ,SIAM, 1995 [24] A. Iserles; H.Z. Munthe-Kass; S.P. Norsett; A. Zanna, Lie-group methods, Acta Numerica 9 (2000) 215-365. [25] A. Iserles; A., Zanna, Preserving algebraic invariants with Runge-Kutta methods, J. Comp. Appl. Math. 125 (2000) 69-81. [26] C.-S. Liu, New integrating methods for time-varying linear systems and Lie-group computations, CMES: Computer Modeling in Engineering & Sciences 20 (2007) 157-175. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39535 | - |
dc.description.abstract | 本文主要討論Euler-Bernoulli梁的正算與反算問題,正算問題方面使用Euler法、RK4與保群算法(group preserving scheme),而對於求解非線性動態系統,保群算法(group preserving scheme)是一個全新的求解形式,它可以保有求解的微分方程系統中的內部對稱群。
而反算問題方面使用擬時間積分法(fictitious time integration method)、李群打靶法(Lie-group shooting method)與李群調整法(Lie-group adaptive method);其中保群算法(group preserving scheme)也同時是李群方法中非常重要的理論基礎。本文結合擬時間積分法(fictitious time integration method)與李群打靶法(Lie-group shooting method)去推導出其問題的代數方程,並在一個封閉形式下求出其解。比較於其他求解方法,李群打靶法(Lie-group shooting method)的優點有以下幾點:(1)不需要事先知道外力方程式的形式。(2)不需要疊代計算。(3)擁有封閉形式的解。而李群調整法(Lie-group adaptive method)則是利用層層計算疊代的技巧,此方法的最大特色即是不需要量測的變位數據,只需要邊界條件與初始條件即可求出正確的解。 本文將會詳盡介紹使用的所有方法,利用其方法求解Euler-Bernoulli梁動態方程式,並且使用程式語言FORTRAN進行數值模擬分析。同時,針對反算病態問題,本文也將會驗證李群方法在對抗噪音方面有著非常良好的結果。 | zh_TW |
dc.description.abstract | The present paper mainly discusses the direct problem and the inverse problem of the Euler-Bernoulli beam dynamic equation. For the direct problem, we use the Euler method, the fourth-order Runge-Kutta method (RK4) and the group preserving scheme (GPS). The group preserving scheme (GPS) is a new form for solving the non-linear dynamical system, and it can preserve the internal symmetry group of the considered ordinary differential equations (ODEs) system.
For the inverse problem, we use the fictitious time integration method (FTIM), the Lie-group shooting method (LGSM) and the Lie-group adaptive method (LGAM). Particularly, the group preserving scheme (GPS) also is a very important basic theory for the Lie-group methods. We have applied the fictitious time integration method (FTIM) and the Lie-group shooting method (LGSM) to deriving the algebraic equations and solved them in a closed-form. In contrast to other estimation methods, the advantages of the Lie-group shooting method (LGSM) are that it does not need any prior information on the functional form of the external force, no iterations are required and the closed-form solution is available. The other Lie-group method we used is the Lie-group adaptive method (LGAM) which is using the layer-stripping technique which can be used to find the unknown force layer by layer via iterations. The layer-stripping technique together with the Lie-group adaptive method (LGAM) leads to that solving the inverse Euler-Bernoulli beam equation does not require the extra measurement of data, in addition to the usual boundary conditions and initial conditions for the direct problem. In this paper, we introduce all of the methods which are used, deeply and thoroughly, and via using them to calculate the Euler-Bernoulli beam dynamic equation. Moreover, we use the programming language, FORTRAN, to analyze the numerical identifications. For the ill-posed behavior of inverse problems, we have tested and verified that the Lie-group methods are very useful to be directed against them, namely using the Lie-group methods we can obtain good results even for the ill-posed problems. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T17:31:06Z (GMT). No. of bitstreams: 1 ntu-100-R98521217-1.pdf: 3992708 bytes, checksum: 928b2602b70efa0ce9761199f89545eb (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv Table of Contents 1 Table of Figures 3 1. Introduction 5 1.1 Preface 5 1.2 Background 6 1.3 Motivation and Purpose 8 1.4 Organization 9 2. By Using the Euler method, Fourth-Order Runge-Kutta Method (RK4) and Group Preserving Schemes (GPS) to Solve the Euler-Bernoulli Beam Equation 11 2.1 Euler-Bernoulli Beam Equation 11 2.2 Euler Method 19 2.3 Fourth-Order Runge-Kutta Method (RK4) 21 2.4 Group Preserving Schemes (GPS) 24 2.4.1 Group 24 2.4.2 Lie Group 27 2.4.3 Augmented Dynamical System 28 2.4.4 Lorentz Group and Lie Algebra 35 2.4.5 Light Cone 37 2.4.6 Cayley Transformation 41 2.4.7 Exponential Mapping 46 3. By Using the Fictitious Time Integration Method (FTIM) and the Lie-Group Shooting Method (LGSM) to Identify Unknown Force in the Euler-Bernoulli Beam Equation 55 3.1 Inverse Problem 55 3.2 Ill-Posed Problem 57 3.3 Fictitious Time Integration Method (FTIM) 59 3.4 Lie-Group Shooting Method (LGSM) 66 3.4.1 Shooting Method 66 3.4.2 One-Step group preserving scheme (GPS) 68 3.4.3 A Generalized Mid-Point Rule 74 3.4.4 A Lie-Group Mapping Between Two Points on the Cone 76 3.4.5 Identifying Unknown Force by the Lie-Group Shooting Method (LGSM) 80 4. By Using the Lie-Group Adaptive Method (LGAM) to Identify Unknown Force in the Euler-Bernoulli Beam Equation 86 4.1 Layer-Stripping Technique and the Numerical Method of Line 86 4.2 One-Step Group Preserving Scheme (GPS) 88 4.3 A Generalized Mid-Point Rule 91 4.4 A Lie-Group Mapping Between Two Points on the Cone 92 4.5 Lie-Group Method 98 4.6 Lie-Group Adaptive Method (LGAM) 101 5. Numerical Identifications 105 5.1 Example 1 105 5.2 Example 2 117 5.3 Example 3 122 6. Conclusions and Future Works 128 6.1 Conclusions 128 6.2 Future Works 129 References 131 | |
dc.language.iso | en | |
dc.title | 利用擬時間積分法與李群方法識別Euler-Bernoulli梁的外力 | zh_TW |
dc.title | By using the FTIM and Lie-group methods to identify unknown force in the Euler-Bernoulli beam | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊德良,業為忠 | |
dc.subject.keyword | 保群算法,Euler-Bernoulli梁,反算問題,病態問題,李群方法, | zh_TW |
dc.subject.keyword | Group preserving scheme (GPS),Euler-Bernoulli beam,Inverse problems,Ill-posed problems,Lie-group methods, | en |
dc.relation.page | 134 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-07-09 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 3.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。