請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39522完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李雅榮(Ya-Jung Lee) | |
| dc.contributor.author | Yu-Chieh Wang | en |
| dc.contributor.author | 王昱傑 | zh_TW |
| dc.date.accessioned | 2021-06-13T17:30:43Z | - |
| dc.date.available | 2012-07-25 | |
| dc.date.copyright | 2011-07-25 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-11 | |
| dc.identifier.citation | REFERENCE
[1] W. E. Heronemus and M. T. Society, Pollution-free Energy from the Offshore Winds: Marine Technology Society, 1972. [2] '台電月刊 527期.' [3] Studie naar haalbaarheid van en randvoorwaarden voor drijven de offshore windturbines: ECN, MARIN, Lagerwey the Windmaster, TNO, TUD, MSC, Dec. 2002. [4] W. Musial, Butterfield, S., Boone, A., 'Feasibility of floating platform systems for wind turbines,' in 23rd ASME Wind Energy Symposium Proceedings, Reno, Nevada, January 2004. [5] T. Kogaki, et al., 'Prospect of offshore wind energy development in Japan,' International Journal of Environment and Sustainable Development, vol. 1, pp. 304-311, 2002. [6] M. H. Hansen, Hansen, A., Larsen, T.J., Oye, S., Sorensen, P., Fuglsang, P., 'Control design for a pitch-regulated, variable speed wind turbine,' Riso National Laboratory, Roskilde, Denmark,January 2005. [7] K. H. Lee, 'Responses of floating wind turbines to wind and wave excitation,' 2005. [8] C. P. M. Butterfield, W.; Jonkman, J.; Sclavounos, P.; and Wayman, L., 'Engineering challenges for floating offshore wind turbines,' in Copenhagen Offshore Wind 2005 Conference and Expedition Proceedings, Copenhagen, Denmark,, October 2005. [9] J. M. Jonkman and M. L. Buhl Jr., 'Loads analysis of a floating offshore wind turbine using fully coupled simulation,' in WINDPOWER 2007 Conference and Exhibition, Los Angeles, California, June 2007. [10] D. Matha, 'Model Development and Loads Analysis of an Offshore Wind Turbine on a Tension Leg Platform, with a Comparison to Other Floating Turbine Concepts,' ed: NREL Report, NREL/SR-500-45891, 2009. [11] Z.-Z. Chen, et al., 'Mechanical characteristics of some deepwater floater designs for offshore wind turbines,' Wind Engineering, vol. 30, pp. 417-430, 2006. [12] F. G. Nielsen, et al., 'Integrated dynamic analysis of floating offshore wind turbines,' in 25TH International Conference on Offshore Mechanics and Arctic Engineering, OMAE 2006, June 4, 2006 - June 9, 2006, Hamburg, Germany, 2006, pp. Ocean, Offshore, and Arctic Engineering Division of ASME. [13] A. R. Henderson and M. H. Patel, 'On the modelling of a floating offshore wind turbine,' Wind Energy, vol. 6, pp. 53-86, Jan-Mar 2003. [14] H. Suzuki and A. Sato, 'Load on Turbine Blade Induced by Motion of Floating Platform and Design Requirement for the Platform,' ASME Conference Proceedings, vol. 2007, pp. 519-525, 2007. [15] P. J. Moriarty, et al., Aerodyn theory manual: National Renewable Energy Laboratory, 2005. [16] Y.-J. Chen, 'Internet Platform Implementation for Performance Evaluations of Wind Turbine Blades,' Master Thesis, Engineering Sicence and Ocean Engineering, National Taiwan University Taipei, 2008. [17] H. Glauert, 'Airplane propellers,' Aerodynamic theory, vol. 4, pp. 169-360, 1935. [18] H. Glauert, 'A General Theory of the Autogyro. R. & M. No. 1111,' British ARC, 1926. [19] J. M. Jonkman and N. R. E. Laboratory, Definition of a 5-MW reference wind turbine for offshore system development: National Renewable Energy Laboratory, 2009. [20] J. M. Jonkman and N. R. E. Laboratory, Dynamics modeling and loads analysis of an offshore floating wind turbine vol. 68, 2007. [21] J. P. Holman, Experimental methods for engineers, 7th ed. Boston: McGraw-Hill, 2001. [22] 郭一羽, '海岸工程學,' 2001. [23] J. Jonkman and W. Musial, 'Offshore Code Comparison Collaboration (OC3) for IEA Task 23 Offshore Wind Technology and Deployment,' Contract, vol. 303, pp. 275-3000, 2010. [24] D. N. Veritas, 'Environmental conditions and environmental loads,' Recommended Practice DNV-RP-C205, Norway, 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39522 | - |
| dc.description.abstract | 風力發電的發展趨勢由陸上風電往海上風電發展,海上風電目前發展至深水區之階段,深水區須採用浮體平台搭配風力發電機,再利用錨鏈系統固定浮體平台,整體錨鏈、浮體及風機系統稱為浮體式風力發電機。浮體式風力機在海上運轉時會受風力及波浪力的作用,浮體受外力作用會發生運動行為,且浮體風機的運動行為會對葉片結構與風機運轉效能產生影響。本研究以SPAR型浮體做為風力機之浮體平台,推導規則波作用下浮體平台的運動模式,討論浮體運動產生之慣性力對風力發電機葉片的影響,並進行動搖實驗測量運動條件下葉片的應力,驗證運動模式之正確性,並確認浮體運動對葉片的影響。此外亦探討浮體運動對風機發電效能的影響,在浮體運動的條件下,利用BEM方法計算風力機發電輸出與發電效率的變化。 | zh_TW |
| dc.description.abstract | This study is concerned about the motion of the floating wind turbine. Floating wind turbine stands in the ocean, and it encounters the wind loads and wave loads. When the wave hits the floating platform, the floating platform begins to do some kinds of motion. This study supposes that the floating wind turbine hit by regular wave begin to do pitching, surging, and heaving motions. By calculating the inertial force induced by the motion of platform, the stress on the blade can be analyzed. Conduct an experiment to measure the stress on the blade when the tower is doing the pitching motion. Besides, the motion of the wind turbine influences the power efficiency. Therefore, this study uses BEM method to calculate the power generation of the wind turbine when the platform is doing pitching motion. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T17:30:43Z (GMT). No. of bitstreams: 1 ntu-100-R98525002-1.pdf: 13302920 bytes, checksum: 07efd22dd9ef1c8b41508544923f7460 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | CONTENTS
口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv 圖目錄 vi 表目錄 x 第1章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 本文架構 3 第2章 浮體式風機運動理論及效能計算方法 5 2.1 浮體式風力機介紹 5 2.1.1 離岸型風力發電發展 5 2.1.2 浮體式風力機 6 2.2 浮體式風力機之運動特性分析 11 2.3 動搖理論 14 2.4 風機效能計算方法 19 2.4.1 動量理論(Momentum Theory) 19 2.4.2 葉片元素理論(Blade element Theory) 23 2.4.3 葉片元素動量理論 25 第3章 動搖實驗 30 3.1 動搖實驗概念 30 3.2 搖動機台及葉片 31 3.2.1 搖動機台 31 3.2.2 實驗葉片 36 3.3 實驗測量儀器 39 3.3.1 無線應變測量電路板 39 3.3.2 無線應變測量系統校正與壓克力材料試驗 48 3.4 動搖實驗 54 3.4.1 第一階段動搖實驗—長方形壓克力葉片 54 3.4.2 第二階段動搖實驗—翼形葉片 68 3.4.3 實驗誤差分析 74 3.4.4 實驗結果討論 74 第4章 浮體式風機發電效率計算 76 4.1 葉片翼形介紹 76 4.2 固定式風機運轉效率計算 80 4.3 搖動中風機之發電效率計算 82 4.3.1 搖動下之BEM計算 82 4.3.2 搖動角度對效率之影響 83 4.3.3 搖動中風機之效率計算 86 第5章 結論與建議 100 5.1 結論 100 5.2 未來研究之建議 102 REFERENCE 103 附錄A:校正試驗數據 105 附錄B:波浪強制搖動的效率計算結果 107 附錄C:SPAR自然搖動的效率計算結果 113 | |
| dc.language.iso | zh-TW | |
| dc.subject | BEM發電效率計算 | zh_TW |
| dc.subject | 浮體式風力機 | zh_TW |
| dc.subject | 浮體平台 | zh_TW |
| dc.subject | SPAR型浮體 | zh_TW |
| dc.subject | 浮體運動分析 | zh_TW |
| dc.subject | 動搖實驗 | zh_TW |
| dc.subject | 葉片運動慣性力 | zh_TW |
| dc.subject | floating platform | en |
| dc.subject | power evaluation by BEM method | en |
| dc.subject | blade’s inertial force | en |
| dc.subject | motion of floating platform | en |
| dc.subject | SPAR type platform | en |
| dc.subject | floating wind turbine | en |
| dc.title | 浮體式風力機之運動特性研究及其效能影響評估 | zh_TW |
| dc.title | Motion Characteristics and Power Evaluation on Floating Offshore Wind Turbine | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林輝政(Huei-Jeng Lin),郭真祥(Jhen-Shiang Kuo),陳昭宏(Jau-Horng Chen),鍾承憲(Cheng-Hsien Chung) | |
| dc.subject.keyword | 浮體式風力機,浮體平台,SPAR型浮體,浮體運動分析,動搖實驗,葉片運動慣性力,BEM發電效率計算, | zh_TW |
| dc.subject.keyword | floating wind turbine,floating platform,SPAR type platform,motion of floating platform,blade’s inertial force,power evaluation by BEM method, | en |
| dc.relation.page | 136 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 12.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
