請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3949完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李百祺 | |
| dc.contributor.author | Po-Yi Lee | en |
| dc.contributor.author | 李柏逸 | zh_TW |
| dc.date.accessioned | 2021-05-13T08:39:05Z | - |
| dc.date.available | 2020-02-08 | |
| dc.date.available | 2021-05-13T08:39:05Z | - |
| dc.date.copyright | 2017-02-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-11-16 | |
| dc.identifier.citation | 1 Hughes, J. P., Rees, S., Kalindjian, S. B., & Philpott, K. L. (2011). Principles of early drug discovery. British journal of pharmacology, 162(6), 1239-1249.
2 Kleinman, H. K., Philp, D., & Hoffman, M. P. (2003). Role of the extracellular matrix in morphogenesis. Current opinion in biotechnology, 14(5), 526-532. 3 Yamada, K. M., & Cukierman, E. (2007). Modeling tissue morphogenesis and cancer in 3D. Cell, 130(4), 601-610. 4 Pampaloni, F., Reynaud, E. G., & Stelzer, E. H. (2007). The third dimension bridges the gap between cell culture and live tissue. Nature reviews Molecular cell biology, 8(10), 839-845. 5 Baker, B. M., & Chen, C. S. (2012). Deconstructing the third dimension–how 3D culture microenvironments alter cellular cues. J Cell Sci, 125(13), 3015-3024. 6 Griffith, L. G., & Swartz, M. A. (2006). Capturing complex 3D tissue physiology in vitro. Nature reviews Molecular cell biology, 7(3), 211-224. 7 Thorn, K. (2016). A quick guide to light microscopy in cell biology. Molecular biology of the cell, 27(2), 219-222. 8 Hell, S., & Stelzer, E. H. (1992). Properties of a 4Pi confocal fluorescence microscope. JOSA A, 9(12), 2159-2166. 9 Willig, K. I., Kellner, R., Medda, R., Hein, B., Jakobs, S., & Hell, S. W. (2006). Nanoscale resolution in GFP-based microscopy. Nature Methods, 3(9), 721-723. 10 Graf, B. W., & Boppart, S. A. (2010). Imaging and analysis of three-dimensional cell culture models. Live Cell Imaging: Methods and Protocols, 211-227. 11 Debeir, O., Adanja, I., Kiss, R., & Decaestecker, C. (2008). Models of cancer cell migration and cellular imaging and analysis. The Motile Actin System in Health and Disease, 123-156. 12 Massoud, T. F., & Gambhir, S. S. (2003). Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes & development, 17(5), 545-580. 13 Chouinard, J. A., Rousseau, J. A., Beaudoin, J. F., Vermette, P., & Lecomte, R. (2012). Positron emission tomography detection of human endothelial cell and fibroblast monolayers: effect of pretreament and cell density on 18 FDG uptake. Vascular cell, 4(1), 1. 14 Zehbe, R., Goebbels, J., Ibold, Y., Gross, U., & Schubert, H. (2010). Three-dimensional visualization of in vitro cultivated chondrocytes inside porous gelatine scaffolds: a tomographic approach. Acta biomaterialia, 6(6), 2097-2107. 15 Xu, H., Othman, S. F., & Magin, R. L. (2008). Monitoring tissue engineering using magnetic resonance imaging. Journal of bioscience and bioengineering, 106(6), 515-527. 16 Bao, Z., Murray, J. I., Boyle, T., Ooi, S. L., Sandel, M. J., & Waterston, R. H. (2006). Automated cell lineage tracing in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 103(8), 2707-2712. 17 Benninger, R. K., & Piston, D. W. (2013). Two‐photon excitation microscopy for the study of living cells and tissues. Current protocols in cell biology, 4-11. 18 Tadrous, P. J. (2000). Methods for imaging the structure and function of living tissues and cells: 1. Optical coherence tomography. The Journal of pathology, 191(2), 115-119. 19 Kircher, M. F., Gambhir, S. S., & Grimm, J. (2011). Noninvasive cell-tracking methods. Nature reviews Clinical oncology, 8(11), 677-688. 20 Lee, V. K., Dias, A., Ozturk, M. S., Chen, K., Tricomi, B., Corr, D. T., ... & Dai, G. (2015). 3D Bioprinting and 3D Imaging for Stem Cell Engineering. In Bioprinting in Regenerative Medicine (pp. 33-66). Springer International Publishing. 21 Jang, B. S. (2013). MicroSPECT and MicroPET imaging of small animals for drug development. Toxicological research, 29(1), 1-6. 22 Perilli, E., Parkinson, I. H., & Reynolds, K. J. (2012). Micro-CT examination of human bone: from biopsies towards the entire organ. Annali dell'Istituto superiore di sanità, 48(1), 75-82. 23 Sharma, R. (2009). Microimaging of hairless rat skin by magnetic resonance at 900 MHz. Magnetic resonance imaging, 27(2), 240-255. 24 Schatzlein, A., & Cevc, G. (1998). Non-uniform cellular packing of the stratum corneum and permeability barrier function of intact skin: a high-resolution confocal laser scanning microscopy study using highly deformable vesicles (Transfersomes). British Journal of Dermatology, 138(4), 583-592. 25 Huzaira, M., Rius, F., Rajadhyaksha, M., Anderson, R. R., & González, S. (2001). Topographic variations in normal skin, as viewed by in vivo reflectance confocal microscopy. Journal of Investigative Dermatology, 116(6), 846-852. 26 Wang, T. D., Friedland, S., Sahbaie, P., Soetikno, R., Hsiung, P. L., Liu, J. T., ... & Contag, C. H. (2007). Functional imaging of colonic mucosa with a fibered confocal microscope for real-time in vivo pathology. Clinical gastroenterology and hepatology, 5(11), 1300-1305. 27 Georgakoudi, I., Rice, W. L., Hronik-Tupaj, M., & Kaplan, D. L. (2008). Optical spectroscopy and imaging for the noninvasive evaluation of engineered tissues. Tissue Engineering Part B: Reviews, 14(4), 321-340. 28 Kobat, D., Horton, N. G., & Xu, C. (2011). In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. Journal of biomedical optics, 16(10), 106014-106014. 29 Fujimoto, J. G. (2003). Optical coherence tomography for ultrahigh resolution in vivo imaging. Nature biotechnology, 21(11), 1361-1367. 30 Yang, Y., Dubois, A., Qin, X. P., Li, J., El Haj, A., & Wang, R. K. (2006). Investigation of optical coherence tomography as an imaging modality in tissue engineering. Physics in medicine and biology, 51(7), 1649. 31 Zhang, H. F., Maslov, K., Stoica, G., & Wang, L. V. (2006). Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nature biotechnology, 24(7), 848-851. 32 Song, K. H., & Wang, L. V. (2007). Deep reflection-mode photoacoustic imaging of biological tissue. Journal of biomedical optics, 12(6), 060503-060503. 33 Zemp, R. J., Song, L., Bitton, R., Shung, K. K., & Wang, L. V. (2008). Realtime photoacoustic microscopy in vivo with a 30-MHz ultrasound array transducer. Optics express, 16(11), 7915-7928. 34 Zhang, C., Maslov, K., & Wang, L. V. (2010). Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo. Optics letters, 35(19), 3195-3197. 35 Hai, P., Yao, J., Maslov, K. I., Zhou, Y., & Wang, L. V. (2014). Near-infrared optical-resolution photoacoustic microscopy. Optics letters, 39(17), 5192-5195. 36 Rao, B., Maslov, K., Danielli, A., Chen, R., Shung, K. K., Zhou, Q., & Wang, L. V. (2011). Real-time four-dimensional optical-resolution photoacoustic microscopy with Au nanoparticle-assisted subdiffraction-limit resolution. Optics letters, 36(7), 1137-1139. 37 Combs, C. A. (2010). Fluorescence microscopy: a concise guide to current imaging methods. Current Protocols in Neuroscience, 2-1. 38 Boustany, N. N., Boppart, S. A., & Backman, V. (2010). Microscopic imaging and spectroscopy with scattered light. Annual review of biomedical engineering, 12, 285. 39 Hoebe, R. A., Van Oven, C. H., Gadella, T. J., Dhonukshe, P. B., Van Noorden, C. J. F., & Manders, E. M. M. (2007). Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging. Nature biotechnology, 25(2), 249-253. 40 Rubart, M. (2004). Two-photon microscopy of cells and tissue. Circulation Research, 95(12), 1154-1166. 41 Drobizhev, M., Makarov, N. S., Tillo, S. E., Hughes, T. E., & Rebane, A. (2011). Two-photon absorption properties of fluorescent proteins. Nature methods, 8(5), 393-399. 42 Wang, L. V., & Hu, S. (2012). Photoacoustic tomography: in vivo imaging from organelles to organs. Science, 335(6075), 1458-1462. 43 Xu, M., & Wang, L. V. (2006). Photoacoustic imaging in biomedicine. Review of scientific instruments, 77(4), 041101. 44 Yang, J. M., Favazza, C., Chen, R., Yao, J., Cai, X., Maslov, K., ... & Wang, L. V. (2012). Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nature Medicine, 18(8), 1297-1302. 45 Bell, A. G. (1880). On the production and reproduction of sound by light. American Journal of Science, (118), 305-324. 46 Pramanik, M., Ku, G., Li, C., & Wang, L. V. (2008). Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography. Medical physics, 35(6), 2218-2223. 47 Wang, X., Xie, X., Ku, G., Wang, L. V., & Stoica, G. (2006). Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. Journal of biomedical optics, 11(2), 024015-024015. 48 Wang, X., Chamberland, D. L., & Jamadar, D. A. (2007). Noninvasive photoacoustic tomography of human peripheral joints toward diagnosis of inflammatory arthritis. Optics letters, 32(20), 3002-3004. 49 Zhang, H. F., Maslov, K., Li, M. L., Stoica, G., & Wang, L. V. (2006). In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy. Optics Express, 14(20), 9317-9323. 50 Oh, J. T., Li, M. L., Zhang, H. F., Maslov, K., Stoica, G., & Wang, L. V. (2006). Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy. Journal of biomedical optics, 11(3), 034032-034032. 51 Zhang, H. F., Maslov, K., Stoica, G., & Wang, L. V. (2006). Imaging acute thermal burns by photoacoustic microscopy. Journal of biomedical optics, 11(5), 054033-054033. 52 Yao, J., & Wang, L. V. (2014). Sensitivity of photoacoustic microscopy. Photoacoustics, 2(2), 87-101. 53 Duck, F. A. (2013). Physical properties of tissues: a comprehensive reference book. Academic press. 54 Wang, L. V., & Wu, H. I. (2012). Biomedical optics: principles and imaging. John Wiley & Sons. 55 Liu, T., Wang, J., Petrov, G. I., Yakovlev, V. V., & Zhang, H. F. (2010). Photoacoustic generation by multiple picosecond pulse excitation. Medical physics, 37(4), 1518-1521. 56 A. N. S. I. (2007). ANSI Z136.1 - safe use of lasers. Laser Institute of America., Florida. 57 Tam, A. C. (1986). Applications of photoacoustic sensing techniques. Reviews of Modern Physics, 58(2), 381. 58 Maslov, K., Zhang, H. F., Hu, S., & Wang, L. V. (2008). Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Optics letters, 33(9), 929-931. 59 Xi, P. (Ed.). (2014). Optical Nanoscopy and Novel Microscopy Techniques. CRC Press. 60 Wang, L., Maslov, K., & Wang, L. V. (2013). Single-cell label-free photoacoustic flowoxigraphy in vivo. Proceedings of the National Academy of Sciences, 110(15), 5759-5764. 61 Hu, S., Yan, P., Maslov, K., Lee, J. M., & Wang, L. V. (2009). Intravital imaging of amyloid plaques in a transgenic mouse model using optical-resolution photoacoustic microscopy. Optics letters, 34(24), 3899-3901. 62 Xie, Z., Jiao, S., Zhang, H. F., & Puliafito, C. A. (2009). Laser-scanning optical-resolution photoacoustic microscopy. Optics letters, 34(12), 1771-1773. 63 Hu, S., Maslov, K., & Wang, L. V. (2011). Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed. Optics letters, 36(7), 1134-1136. 64 Zhang, Y., Cai, X., Choi, S. W., Kim, C., Wang, L. V., & Xia, Y. (2010). Chronic label-free volumetric photoacoustic microscopy of melanoma cells in three-dimensional porous scaffolds. Biomaterials, 31(33), 8651-8658. 65 Yao, J., & Wang, L. V. (2013). Photoacoustic microscopy. Laser & photonics reviews, 7(5), 758-778. 66 Chou, C. H., Chen, C. D., & Wang, C. C. (2005). Highly efficient, wavelength-tunable, gold nanoparticle based optothermal nanoconvertors. The journal of physical chemistry B, 109(22), 11135-11138. 67 Duncan, B., Kim, C., & Rotello, V. M. (2010). Gold nanoparticle platforms as drug and biomacromolecule delivery systems. Journal of Controlled Release, 148(1), 122-127. 68 Jain, P. K., Huang, X., El-Sayed, I. H., & El-Sayed, M. A. (2008). Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts of Chemical Research, 41(12), 1578-1586. 69 Song, K. H., Kim, C., Maslov, K., & Wang, L. V. (2009). Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes. European journal of radiology, 70(2), 227-231. 70 Cook, J. R. (2013). Photoacoustic Microscopy of Nanoparticles in Cells and Tissues (Doctoral dissertation, The University of Texas at Austin). Retrieved from https://repositories.lib.utexas.edu/handle/2152/21882 71 Chen, Y. S., Frey, W., Kim, S., Homan, K., Kruizinga, P., Sokolov, K., & Emelianov, S. (2010). Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Optics express, 18(9), 8867-8878. 72 Link, S., Burda, C., Wang, Z. L., & El-Sayed, M. A. (1999). Electron dynamics in gold and gold–silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation. The Journal of chemical physics, 111(3), 1255-1264. 73 NanoComposix, (2016). Gold Nanoparticles: Optical Properties. Retrieved from http://nanocomposix.com/pages/gold-nanoparticles-optical-properties 74 Link, S., & El-Sayed, M. A. (1999). Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. The Journal of Physical Chemistry B, 103(40), 8410-8426. 75 Copland, J. A., Eghtedari, M., Popov, V. L., Kotov, N., Mamedova, N., Motamedi, M., & Oraevsky, A. A. (2004). Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography. Molecular Imaging & Biology, 6(5), 341-349. 76 Mallidi, S., Larson, T., Tam, J., Joshi, P. P., Karpiouk, A., Sokolov, K., & Emelianov, S. (2009). Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer.Nano letters, 9(8), 2825-2831. 77 Kim, C., Cho, E. C., Chen, J., Song, K. H., Au, L., Favazza, C., ... & Wang, L. V. (2010). In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS nano, 4(8), 4559-4564. 78 Tobis, S., Knopf, J. K., Silvers, C. R., Marshall, J., Cardin, A., Wood, R. W., ... & Singer, E. A. (2012). Near infrared fluorescence imaging after intravenous indocyanine green: initial clinical experience with open partial nephrectomy for renal cortical tumors. Urology, 79(4), 958-964. 79 Kitai, T., Inomoto, T., Miwa, M., & Shikayama, T. (2005). Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast cancer, 12(3), 211-215. 80 Tanaka, R., Nakashima, K., & Fujimoto, W. (2009). Sentinel lymph node detection in skin cancer using fluorescence navigation with indocyanine green. The Journal of dermatology, 36(8), 468-470. 81 Miyashiro, I., Hiratsuka, M., Kishi, K., Takachi, K., Yano, M., Takenaka, A., ... & Ishiguro, S. (2013). Intraoperative diagnosis using sentinel node biopsy with indocyanine green dye in gastric cancer surgery: an institutional trial by experienced surgeons. Annals of surgical oncology, 20(2), 542-546. 82 Lau, H., Man, K., Fan, S. T., Yu, W. C., Lo, C. M., & Wong, J. (1997). Evaluation of preoperative hepatic function in patients with hepatocellular carcinoma undergoing hepatectomy. British journal of surgery, 84(9), 1255-1259. 83 Seyama, Y., Kubota, K., Sano, K., Noie, T., Takayama, T., Kosuge, T., & Makuuchi, M. (2003). Long-term outcome of extended hemihepatectomy for hilar bile duct cancer with no mortality and high survival rate. Annals of surgery, 238(1), 73-83. 84 Faybik, P., Krenn, C. G., Baker, A., Lahner, D., Berlakovich, G., Steltzer, H., & Hetz, H. (2004). Comparison of invasive and noninvasive measurement of plasma disappearance rate of indocyanine green in patients undergoing liver transplantation: a prospective investigator‐blinded study. Liver transplantation, 10(8), 1060-1064. 85 Ishizawa, T., Fukushima, N., Shibahara, J., Masuda, K., Tamura, S., Aoki, T., ... & Kokudo, N. (2009). Real‐time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer, 115(11), 2491-2504. 86 Gotoh, K., Yamada, T., Ishikawa, O., Takahashi, H., Eguchi, H., Yano, M., ... & Imaoka, S. (2009). A novel image‐guided surgery of hepatocellular carcinoma by indocyanine green fluorescence imaging navigation. Journal of surgical oncology, 100(1), 75-79. 87 Zerda, A. D. L., Liu, Z., Bodapati, S., Teed, R., Vaithilingam, S., Khuri-Yakub, B. T., ... & Gambhir, S. S. (2010). Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano letters, 10(6), 2168-2172. 88 Wang, H., Liu, C., Gong, X., Hu, D., Lin, R., Sheng, Z., ... & Song, L. (2014). In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes. Nanoscale, 6(23), 14270-14279. 89 Kim, G., Huang, S. W., Day, K. C., O’Donnell, M., Agayan, R. R., Day, M. A., ... & Ashkenazi, S. (2007). Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging. Journal of biomedical optics, 12(4), 044020-044020. 90 Kang, H., Lee, H. Y., Lee, K. S., & Kim, J. H. (2012). Imaging-based tumor treatment response evaluation: review of conventional, new, and emerging concepts. Korean journal of radiology, 13(4), 371-390. 91 Salmon, H., Franciszkiewicz, K., Damotte, D., Dieu-Nosjean, M. C., Validire, P., Trautmann, A., ... & Donnadieu, E. (2012). Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. The Journal of clinical investigation, 122(3), 899-910. 92 Slaney, C. Y., Kershaw, M. H., & Darcy, P. K. (2014). Trafficking of T cells into tumors. Cancer research, 74(24), 7168-7174. 93 Helmchen, F., & Denk, W. (2005). Deep tissue two-photon microscopy. Nature methods, 2(12), 932-940. 94 Sirah - Lasertechnik GmbH, (2016). Cobra Optical Layout. Retrieved from http://www.sirah.com/laser/pulsed-lasers/cobra 95 Sirah - Lasertechnik GmbH, (2016). Styryl 9 Tuning Curve 532 nm pumped. Retrieved from http://www.sirah.com/dyes-accessories/laser-dyes-532-nm/styryl-9 96 蕭文澤. (2011). 雷射技術與應用-振鏡掃描系統介紹. 儀科中心簡訊, (107), 12-13. 97 MathWorks, (2016). Multifaceted Patches. Retrieved from https://www.mathworks.com/help/matlab/visualize/multifaceted-patches.html 98 Chang, S. S., Shih, C. W., Chen, C. D., Lai, W. C., & Wang, C. C. (1999). The shape transition of gold nanorods. Langmuir, 15(3), 701-709. 99 Chen, Y. S., Frey, W., Kim, S., Kruizinga, P., Homan, K., & Emelianov, S. (2011). Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano letters, 11(2), 348-354. 100 Glatz, J., Deliolanis, N. C., Buehler, A., Razansky, D., & Ntziachristos, V. (2011). Blind source unmixing in multi-spectral optoacoustic tomography.Optics express, 19(4), 3175-3184. 101 Nam, S. Y., Ricles, L. M., Suggs, L. J., & Emelianov, S. Y. (2012). Nonlinear photoacoustic signal increase from endocytosis of gold nanoparticles. Optics letters, 37(22), 4708-4710. 102 Wei, C. W., Lombardo, M., Larson-Smith, K., Pelivanov, I., Perez, C., Xia, J., ... & O'Donnell, M. (2014). Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions. Applied physics letters, 104(3), 033701. 103 Prost, A., Poisson, F., & Bossy, E. (2015). Photoacoustic generation by a gold nanosphere: From linear to nonlinear thermoelastics in the long-pulse illumination regime. Physical Review B, 92(11), 115450. 104 Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE transactions on Neural Networks, 10(3), 626-634. 105 Gävert, H., Hurri, J., Särelä, J., & Hyvärinen, A. (2005). The FastICA package for MATLAB. Lab Comput Inf Sci Helsinki Univ. Technol. 106 Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM computing surveys (CSUR), 31(3), 264-323. 107 Saxena, V., Sadoqi, M., & Shao, J. (2004). Enhanced photo-stability, thermal-stability and aqueous-stability of indocyanine green in polymeric nanoparticulate systems. Journal of Photochemistry and Photobiology B: Biology, 74(1), 29-38. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/3949 | - |
| dc.description.abstract | 了解治療細胞與腫瘤間的交互作用,有助於發展如免疫治療的細胞治療。不同於二維細胞培養技術,三維細胞培養系統提供更擬真的細胞環境用以觀察細胞過程及了解生物機制。然而,傳統純光學的分子影像技術像是共軛焦顯微鏡、雙光子顯微鏡在觀測三維微環境下的生物現象有明顯的缺點。因此,在滿足三維細胞培養系統前提下,本文建構出一套可用於細胞追蹤以及細胞型態描繪的雙波長光聲分子顯微系統(波長為523 nm以及800 nm),並運用金奈米粒子作為外源性的光聲對比劑。以奈米金球標定胞殺性T細胞以及以奈米金桿標定肝癌細胞,特化其細胞分別對523 nm以及 800 nm雷射的選擇性吸收予以鑑別。實驗結果顯示,雙波長光聲分子顯微系統可在三維微環境下有效觀測經標定的T細胞分布以及描繪出經標定的肝腫瘤球輪廓。 | zh_TW |
| dc.description.abstract | With the knowledge of cell interaction between tumor and therapeutic cells, it can help to develop cell-based therapeutic strategies such as immunotherapy. In contrast to traditional two-dimensional (2D) cell cultures, a three-dimensional (3D) cell culture system better mimics the cell environment for observation of cellular processes and understanding biological mechanisms. However, conventional molecular imaging methods such as confocal microscopy and two-photon microscopy hardly depict cell processes in 3D models. Thus, we have developed dual-wavelength photoacoustic molecular microscopy for 3D cell culture systems for visualizing cell distribution and morphology. We employed gold nanoparticles (AuNPs) as wavelength-dependent contrast agents in our dual-wavelength optical resolution photoacoustic microscope, with the wavelength of 523 nm and 800 nm, for visualizing CD8+ cytotoxic T lymphocytes (CTLs) in an in vitro 3D tumor microenvironment. Targeted CTLs with avidin-conjugated gold nanospheres (AuNSs) and hepatocellular carcinoma labeled with gold nanorods (AuNRs) were distinguishable by their distinct absorption spectra under 523-nm and 800-nm laser irradiation. We successfully showed that dual-wavelength OR-PAM can map the distribution of CTLs with AuNSs under 523-nm irradiation and the 3D morphology of tumorspheres with AuNRs under 800-nm irradiation in an in vitro 3D microenvironment. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T08:39:05Z (GMT). No. of bitstreams: 1 ntu-105-R03945007-1.pdf: 7785920 bytes, checksum: 623d09f2e3b377502d4706a5d379ada4 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1三維細胞培養系統 1 1.2三維微環境下之可視化 2 1.3光聲斷層掃描 7 1.3.1光聲斷層掃描簡介 7 1.3.2光聲波產生與接收 8 1.3.3光聲顯微系統 13 1.4光聲造影之對比源 15 1.4.1金奈米粒子 15 1.4.2靛氰綠 17 1.5研究動機與目的 18 1.6研究架構 19 第二章 雙波長光聲分子顯微鏡 20 2.1技術簡介 20 2.2系統架構 20 2.2.1物鏡選擇 21 2.2.2雙波長雷射系統 22 2.2.3雷射掃描系統 24 2.2.4訊號同步與擷取系統 26 2.2.5光學輔助定位系統 28 2.2.6超音波換能器選擇 30 2.2.7客製化二氧化碳培養箱 31 2.3三維掃描流程 33 2.4三維影像重建 36 2.5系統操作之人機介面 38 第三章 系統參數測試 41 3.1掃描間距與電壓之關係 41 3.2雙波長聚焦深度校正 42 3.3空間解析度 42 3.4振鏡掃描精準度 44 3.5有效掃描範圍 45 3.6三維光聲影像 46 3.7掃描成像速度 47 3.8雷射脈衝能量量測與光通量評估 48 第四章 微環境下之細胞之光聲造影 49 4.1以外源光聲對比劑標定細胞的製備 49 4.2以奈米金桿標定的肝癌細胞造影的結果 51 4.3以靛氰綠標定的肝癌細胞造影的結果 53 4.4以奈米金球標定的T細胞造影的結果 55 4.5 T細胞與肝癌細胞混合造影的結果 57 第五章 結論與未來工作 59 5.1結論 59 5.2問題討論與未來工作 60 5.2.1改進系統成像速度 60 5.2.2腫瘤球之三維影像重建 61 5.2.3腫瘤直徑與三維成像能力的限制 63 5.2.4對比劑之雙波長干擾 64 5.2.5光譜分離技術應用 65 5.2.6聚焦式超音波換能器之系統視野限制 68 5.2.7雙波長像差改善 68 5.2.8靛氰綠標定方式改良 69 5.2.9雙波長雷射系統之替代方案 70 參考文獻 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 金奈米粒子 | zh_TW |
| dc.subject | 光學解析度光聲顯微術 | zh_TW |
| dc.subject | 三維細胞培養 | zh_TW |
| dc.subject | 分子影像 | zh_TW |
| dc.subject | molecular imaging | en |
| dc.subject | optical resolution photoacoustic microscopy | en |
| dc.subject | gold nanoparticles | en |
| dc.subject | 3D cell cultures | en |
| dc.title | 用於三維細胞培養系統之雙波長光聲分子顯微鏡 | zh_TW |
| dc.title | Dual-wavelength photoacoustic molecular microscopy for three-dimensional cell culture systems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳淑靜,郭柏齡,謝寶育 | |
| dc.subject.keyword | 光學解析度光聲顯微術,三維細胞培養,金奈米粒子,分子影像, | zh_TW |
| dc.subject.keyword | optical resolution photoacoustic microscopy,3D cell cultures,gold nanoparticles,molecular imaging, | en |
| dc.relation.page | 80 | |
| dc.identifier.doi | 10.6342/NTU201603745 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2016-11-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf | 7.6 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
