請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39491完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳佩燁(Rita Pei-Yeh Chen) | |
| dc.contributor.author | Chieh Sang | en |
| dc.contributor.author | 桑傑 | zh_TW |
| dc.date.accessioned | 2021-06-13T17:29:52Z | - |
| dc.date.available | 2013-08-01 | |
| dc.date.copyright | 2011-07-26 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-12 | |
| dc.identifier.citation | Aguzzi A, Heikenwalder M, Polymenidou M (2007) Insights into prion strains and neurotoxicity. Nat Rev Mol Cell Biol 8: 552-561
Aguzzi A, Polymenidou M (2004) Mammalian prion biology: one century of evolving concepts. Cell 116: 313-327 Baskakov IV (2007) The reconstitution of mammalian prion infectivity de novo. FEBS J 274: 576-587 Baskakov IV, Legname G, Baldwin MA, Prusiner SB, Cohen FE (2002) Pathway complexity of prion protein assembly into amyloid. J Biol Chem 277: 21140-21148 Begg GE, Speicher DW (1999) Mass spectrometry detection and reduction of disulfide adducts between reducing agents and recombinant proteins with highly reactive cysteines. J Biomol Tech 10: 17-20 Bocharova OV, Breydo L, Parfenov AS, Salnikov VV, Baskakov IV (2005) In vitro conversion of full-length mammalian prion protein produces amyloid form with physical properties of PrP(Sc). J Mol Biol 346: 645-659 Bremer J, Baumann F, Tiberi C, Wessig C, Fischer H, Schwarz P, Steele AD, Toyka KV, Nave KA, Weis J, Aguzzi A (2010) Axonal prion protein is required for peripheral myelin maintenance. Nat Neurosci 13: 310-318 Brown P, Bradley R (1998) 1755 and all that: a historical primer of transmissible spongiform encephalopathy. Bmj 317: 1688-1692 Bucciantini M, Calloni G, Chiti F, Formigli L, Nosi D, Dobson CM, Stefani M (2004) Prefibrillar amyloid protein aggregates share common features of cytotoxicity. J Biol Chem 279: 31374-31382 Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416: 507-511 Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, Weissmann C (1993) Mice devoid of PrP are resistant to scrapie. Cell 73: 1339-1347 Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26: 267-298 Chandler RL (1961) Encephalopathy in mice produced by inoculation with scrapie brain material. Lancet 1: 1378-1379 Chesebro B (2003) Introduction to the transmissible spongiform encephalopathies or prion diseases. Br Med Bull 66: 1-20 Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75: 333-366 Cobb NJ, Sonnichsen FD, McHaourab H, Surewicz WK (2007) Molecular architecture of human prion protein amyloid: a parallel, in-register beta-structure. Proc Natl Acad Sci U S A 104: 18946-18951 Cobb NJ, Surewicz WK (2009) Prion diseases and their biochemical mechanisms. Biochemistry 48: 2574-2585 Colby DW, Wain R, Baskakov IV, Legname G, Palmer CG, Nguyen HO, Lemus A, Cohen FE, DeArmond SJ, Prusiner SB (2010) Protease-sensitive synthetic prions. PLoS Pathog 6: e1000736 Collinge J (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 24: 519-550 Collinge J, Clarke AR (2007) A general model of prion strains and their pathogenicity. Science 318: 930-936 DeMarco ML, Daggett V (2004) From conversion to aggregation: protofibril formation of the prion protein. Proc Natl Acad Sci U S A 101: 2293-2298 Ermonval M, Mouillet-Richard S, Codogno P, Kellermann O, Botti J (2003) Evolving views in prion glycosylation: functional and pathological implications. Biochimie 85: 33-45 Gaponenko V, Howarth JW, Columbus L, Gasmi-Seabrook G, Yuan J, Hubbell WL, Rosevear PR (2000) Protein global fold determination using site-directed spin and isotope labeling. Protein Sci 9: 302-309 Getz EB, Xiao M, Chakrabarty T, Cooke R, Selvin PR (1999) A comparison between the sulfhydryl reductants tris(2-carboxyethyl)phosphine and dithiothreitol for use in protein biochemistry. Anal Biochem 273: 73-80 Gimbel DA, Nygaard HB, Coffey EE, Gunther EC, Lauren J, Gimbel ZA, Strittmatter SM (2010) Memory impairment in transgenic Alzheimer mice requires cellular prion protein. J Neurosci 30: 6367-6374 Govaerts C, Wille H, Prusiner SB, Cohen FE (2004) Evidence for assembly of prions with left-handed beta-helices into trimers. Proc Natl Acad Sci U S A 101: 8342-8347 Griffith JS (1967) Self-replication and scrapie. Nature 215: 1043-1044 Hafner-Bratkovic I, Bester R, Pristovsek P, Gaedtke L, Veranic P, Gaspersic J, Mancek-Keber M, Avbelj M, Polymenidou M, Julius C, Aguzzi A, Vorberg I, Jerala R (2011) Globular domain of the prion protein needs to be unlocked by domain swapping to support prion protein conversion. J Biol Chem 286: 12149-12156 Hammes GG (2005) Spectroscopy for the Biological Sciences, Hoboken, New Jersey: John Wiley & Sons, Inc. Herrmann LM, Caughey B (1998) The importance of the disulfide bond in prion protein conversion. Neuroreport 9: 2457-2461 Hooper NM, Turner AJ (2008) A new take on prions: preventing Alzheimer's disease. Trends Biochem Sci 33: 151-155 Hosszu LL, Trevitt CR, Jones S, Batchelor M, Scott DJ, Jackson GS, Collinge J, Waltho JP, Clarke AR (2009) Conformational properties of beta-PrP. J Biol Chem 284: 21981-21990 Hubbell WL, Cafiso DS, Altenbach C (2000) Identifying conformational changes with site-directed spin labeling. Nat Struct Biol 7: 735-739 Jackson GS, Hill AF, Joseph C, Hosszu L, Power A, Waltho JP, Clarke AR, Collinge J (1999a) Multiple folding pathways for heterologously expressed human prion protein. Biochim Biophys Acta 1431: 1-13 Jackson GS, Hosszu LL, Power A, Hill AF, Kenney J, Saibil H, Craven CJ, Waltho JP, Clarke AR, Collinge J (1999b) Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283: 1935-1937 Jarrett JT, Lansbury PT, Jr. (1993) Seeding 'one-dimensional crystallization' of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73: 1055-1058 Knaus KJ, Morillas M, Swietnicki W, Malone M, Surewicz WK, Yee VC (2001) Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat Struct Biol 8: 770-774 Kristiansen M, Deriziotis P, Dimcheff DE, Jackson GS, Ovaa H, Naumann H, Clarke AR, van Leeuwen FW, Menendez-Benito V, Dantuma NP, Portis JL, Collinge J, Tabrizi SJ (2007) Disease-associated prion protein oligomers inhibit the 26S proteasome. Mol Cell 26: 175-188 Legname G, Baskakov IV, Nguyen HO, Riesner D, Cohen FE, DeArmond SJ, Prusiner SB (2004) Synthetic mammalian prions. Science 305: 673-676 Lippincott J, Apostol I (1999) Carbamylation of cysteine: a potential artifact in peptide mapping of hemoglobins in the presence of urea. Anal Biochem 267: 57-64 Lu X, Wintrode PL, Surewicz WK (2007) Beta-sheet core of human prion protein amyloid fibrils as determined by hydrogen/deuterium exchange. Proc Natl Acad Sci U S A 104: 1510-1515 Luhrs T, Zahn R, Wuthrich K (2006) Amyloid formation by recombinant full-length prion proteins in phospholipid bicelle solutions. J Mol Biol 357: 833-841 Makarava N, Baskakov IV (2008) Expression and purification of full-length recombinant PrP of high purity. Methods Mol Biol 459: 131-143 Mehlhorn I, Groth D, Stockel J, Moffat B, Reilly D, Yansura D, Willett WS, Baldwin M, Fletterick R, Cohen FE, Vandlen R, Henner D, Prusiner SB (1996) High-level expression and characterization of a purified 142-residue polypeptide of the prion protein. Biochemistry 35: 5528-5537 Mucke L (2009) Neuroscience: Alzheimer's disease. Nature 461: 895-897 Novitskaya V, Bocharova OV, Bronstein I, Baskakov IV (2006) Amyloid fibrils of mammalian prion protein are highly toxic to cultured cells and primary neurons. J Biol Chem 281: 13828-13836 Parkin ET, Watt NT, Hussain I, Eckman EA, Eckman CB, Manson JC, Baybutt HN, Turner AJ, Hooper NM (2007) Cellular prion protein regulates beta-secretase cleavage of the Alzheimer's amyloid precursor protein. Proc Natl Acad Sci U S A 104: 11062-11067 Pastrana MA, Sajnani G, Onisko B, Castilla J, Morales R, Soto C, Requena JR (2006) Isolation and characterization of a proteinase K-sensitive PrPSc fraction. Biochemistry 45: 15710-15717 Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216: 136-144 Prusiner SB (1991) Molecular biology of prion diseases. Science 252: 1515-1522 Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95: 13363-13383 Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wuthrich K (1996) NMR structure of the mouse prion protein domain PrP(121-321). Nature 382: 180-182 Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 78: 1606-1619 Schuck P, Perugini MA, Gonzales NR, Howlett GJ, Schubert D (2002) Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems. Biophys J 82: 1096-1111 Shearman MS, Hawtin SR, Tailor VJ (1995) The intracellular component of cellular 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) reduction is specifically inhibited by beta-amyloid peptides. J Neurochem 65: 218-227 Stevens R, Stevens L, Price NC (1983) The stabilities of various thiol compounds used in protein purifications. In Biochemical education, Wood EJ (ed), Vol. 11, p 70. Saskatoon, Saskatchewan, Canada: International Union of Biochemistry Tizzano B, Palladino P, De Capua A, Marasco D, Rossi F, Benedetti E, Pedone C, Ragone R, Ruvo M (2005) The human prion protein alpha2 helix: a thermodynamic study of its conformational preferences. Proteins 59: 72-79 Turk E, Teplow DB, Hood LE, Prusiner SB (1988) Purification and properties of the cellular and scrapie hamster prion proteins. Eur J Biochem 176: 21-30 Tycko R (2004) Progress towards a molecular-level structural understanding of amyloid fibrils. Curr Opin Struct Biol 14: 96-103 Welker E, Raymond LD, Scheraga HA, Caughey B (2002) Intramolecular versus intermolecular disulfide bonds in prion proteins. J Biol Chem 277: 33477-33481 Welker E, Wedemeyer WJ, Scheraga HA (2001) A role for intermolecular disulfide bonds in prion diseases? Proc Natl Acad Sci U S A 98: 4334-4336 Wille H, Michelitsch MD, Guenebaut V, Supattapone S, Serban A, Cohen FE, Agard DA, Prusiner SB (2002) Structural studies of the scrapie prion protein by electron crystallography. Proc Natl Acad Sci U S A 99: 3563-3568 Zhang H, Stockel J, Mehlhorn I, Groth D, Baldwin MA, Prusiner SB, James TL, Cohen FE (1997) Physical studies of conformational plasticity in a recombinant prion protein. Biochemistry 36: 3543-3553 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39491 | - |
| dc.description.abstract | 普立昂疾病為一類致命且具傳染性的神經退化疾病,其致病因子為結構不正常且易於聚集的普立昂蛋白(prion protein)。此一具致病力的形式,或稱PrPSc,係由細胞中正常表現的PrPC改變其三維立體結構而來;而此一由α螺旋為主的結構轉變為β摺板為主的結構,會導致蛋白質本身之聚集,進而形成易沉澱的澱粉樣纖維構造。因此,欲釐清普立昂疾病之由來與其傳播方式,就必須視蛋白質不正常之摺疊機制為一重要的探討方向。而近年來有越來越多的證據顯示一種結構以β摺板為主卻可溶的蛋白寡聚體 (β-PrP),可能是澱粉樣纖維形成過程中的前驅物,此一寡聚體便成為探討普立昂蛋白的不正常摺疊中十分重要的部分。然而,目前文獻中所探討的β-寡聚體多係由還原反應、酸化、或是具變性條件之中所產生,且此蛋白中的雙硫鍵對於結構穩定之貢獻亦仍無定論。在這項研究中,我們由全長老鼠之普立昂蛋白得到一種新穎之β寡聚體,且其結構轉變之過程可單純由移除雙硫鍵而觀察到。有趣的是,這些過程可在中性緩衝液中發生。此外電子自旋共振(EPR)圖譜暗示蛋白之helix 2可能參與其中。我們的發現指出雙硫鍵之還原在普立昂蛋白結構轉變中扮演重要地位。 | zh_TW |
| dc.description.abstract | Prion diseases are fatal transmissible neurodegenerative disorder. The infectious agent, “PRION”, is disease-associated β-rich aggregates (PrPSc) which is converted from the normal cellular conformer (PrPC) of the prion protein. Since the α->β conformational transition leads to protein aggregation and formation of toxic amyloid fibrils, the mechanism of protein misfolding is a key subject to elucidate the pathogenic pathway of prion diseases which is still unclear. Recently, several publications have shown that the soluble state of β-rich oligomers (β-PrP) can be a possible precursor of amyloid fibrils, therefore β-PrP is an important part on elucidating the mechanism of prion refolding. However, in previous reports β-PrP was generated under reduced, acidic, and denaturing conditions, and the role of disulfide bond involved in prion structure stabilization is still in doubt. In this study, we show that a novel β-PrP was generated from the full-length recombinant mouse prion protein, and its structural conversion can be observed simply by removing the disulfide bond. Interestingly, slow, spontaneous structural conversion from α- to β- structure can be monitored in a neutral buffer by CD spectroscopy. Moreover, EPR spectra suggest that unfolding of helix 2 is involved in the structural change. Our findings strongly indicate the important role of disulfide bond reduction on the structural conversion of prion protein. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T17:29:52Z (GMT). No. of bitstreams: 1 ntu-100-R98b46012-1.pdf: 55380134 bytes, checksum: 05e128cb910eae5ea78dc0e80d376ed2 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 謝誌 i
中文摘要 iii ABSTRACT iv ABBREVIATIONS v FIGURE CONTENTS xi TABLE CONTENTS xiii CHAPTER 1 INTRODUCTION 1 1.1 Introduction to prion diseases 1 1.2 Prion structural biology 9 1.2.1 Structural features of PrPC 9 1.2.2 Proposed structure models of PrPSc 11 1.3 Mechanism of prion protein conversion 14 1.3.1 Kinetic models for prion structural conversion 14 1.3.2 Disulfide bond 15 1.4 Soluble β-PrP oligomers 18 1.5 Electron paramagnetic resonance (EPR) 21 1.6 The aim of the thesis 26 CHAPTER 2 MATERIALS AND METHODS 29 2.1 Materials 29 2.1.1 Water 29 2.1.2 Chemicals 29 2.2 Methods 32 2.2.1 Expression constructs and site-directed mutagenesis 32 2.2.2 Small-scale protein expression 35 2.2.3 Large-scale protein expression, purification, and identification 35 2.2.3.1 Glycerol cell stock preparation 35 2.2.3.2 Expression of recombinant mouse PrP in E. coli 36 2.2.3.3 Cell-lysis and immobilized metal-ion affinity chromatography (IMAC) 36 2.2.3.4 Desalting and disulfide bond formation for mPrPwt 38 2.2.3.5 HPLC purification and protein identification 39 2.2.4 Secondary structure analysis by circular dichroism and CDPro 40 2.2.5 Analytical ultracentrifugation (AUC) 41 2.2.6 Protease K digestion assay 41 2.2.7 Transmission electron microscopy (TEM) 42 2.2.8 Cytotoxicity assay 42 2.2.9 Spin-labeling and purification 44 2.2.10 Electron paramagnetic resonance (EPR) 45 2.2.11 Formation of amyloid fibrils from recombinant mPrP and ThT binding assay 45 CHAPTER 3 RESULTS I 47 3.1 Expression and purification of full-length mouse PrP (23-231) and its mutant variants 47 3.2 Small-scale expression analysis 49 3.3 Large-scale expression and purification 50 3.4 Protein identification, storage, and expression yield estimation 56 3.5 Spin-labeling and purification 58 CHAPTER 4 RESULTS II 61 4.1 Conformational properties of mutant mPrP 61 4.2 Spontaneous conformational transition in very-dilute buffer concentration 64 4.3 Particle size determination 71 4.4 ThT assay, TEM, and proteinase K resistance assay 72 4.5 Cytotoxicity of β-PrP to neuronal cells 76 4.6 Spin-labeling and EPR spectroscopy 78 4.6.1 Validation of spin-labeled proteins 78 4.6.2 EPR spectroscopy 82 CHAPTER 5 DISCUSSION 85 CHAPTER 6 FUTURE WORKS 90 REFERENCES 94 | |
| dc.language.iso | zh-TW | |
| dc.subject | 結構轉變 | zh_TW |
| dc.subject | 普立昂疾病 | zh_TW |
| dc.subject | 錯誤摺疊 | zh_TW |
| dc.subject | β寡聚體 | zh_TW |
| dc.subject | 雙硫鍵 | zh_TW |
| dc.subject | prion diseases | en |
| dc.subject | structural conversion | en |
| dc.subject | disulfide bond | en |
| dc.subject | oligomer | en |
| dc.subject | misfolding | en |
| dc.title | 老鼠普立昂蛋白自發性結構轉變 | zh_TW |
| dc.title | Spontaneous structural conversion of mouse prion protein | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 金之彥(Chih-Yen King),王勝仕(Steven Sheng-Shih Wa),江昀緯(Yun-Wei Chiang) | |
| dc.subject.keyword | 普立昂疾病,錯誤摺疊,β寡聚體,雙硫鍵,結構轉變, | zh_TW |
| dc.subject.keyword | prion diseases,misfolding,oligomer,disulfide bond,structural conversion, | en |
| dc.relation.page | 100 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-12 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 54.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
