Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39487
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童世煌(Shih-Huang Tung)
dc.contributor.authorChing-Wei Njauwen
dc.contributor.author饒晉維zh_TW
dc.date.accessioned2021-06-13T17:29:45Z-
dc.date.available2016-08-22
dc.date.copyright2011-08-22
dc.date.issued2011
dc.date.submitted2011-08-19
dc.identifier.citation1. Tung SH, Huang YE, Raghavan SR: A new reverse wormlike micellar system: Mixtures of bile salt and lecithin in organic liquids. J Am Chem Soc 2006, 128(17):5751-5756.
2. Hashizaki K, Taguchi H, Saito Y: A novel reverse worm-like micelle from a lecithin/sucrose fatty acid ester/oil system. Colloid and Polymer Science 2009, 287(9):1099-1105.
3. Hashizaki K, Chiba T, Taguchi H, Saito Y: Highly viscoelastic reverse worm-like micelles formed in a lecithin/urea/oil system. Colloid and Polymer Science 2009, 287(8):927-932.
4. Shrestha LK, Yamamoto M, Arima S, Aramaki K: Charge-Free Reverse Wormlike Micelles in Nonaqueous Media. Langmuir 2011, 27(6):2340-2348.
5. ISRAELACHVILI JN: INTERMOLECULAR SURFA 1992.
6. Wabel C: Influence of Lecithin on Structure and Stability of Parenteral Fat Emulsions. 1998.
7. Ezrahi S, Tuval E, Aserin A: Properties, main applications and perspectives of worm micelles. Advances in Colloid and Interface Science 2006, 128-130:77-102.
8. Reisshusson F, Luzzati V: Structure of Micellar Solutions of Some Amphiphilic Compounds in Pure Water as Determined by Absolute Small-Angle X-Ray Scattering Techniques. J Phys Chem-Us 1964, 68(12):3504-&.
9. Ekwall P, Mandell L, Solyom P: Solution Phase with Reversed Micelles in Cetyl Trimethylammonium Bromide-Hexanol-Water System. Journal of Colloid and Interface Science 1971, 35(2):266-&.
10. Fontell K, Khan A, Lindstrom B, Maciejewska D, Puangngern S: Phase-Equilibria and Structures in Ternary-Systems of a Cationic Surfactant (C16tabr or (C16ta)2so4), Alcohol, and Water. Colloid and Polymer Science 1991, 269(7):727-742.
11. Soltero JFA, Puig JE, Manero O: Rheology of the cetyltrimethylammonium tosilate-water system .2. Linear viscoelastic regime. Langmuir 1996, 12(11):2654-2662.
12. Porte G, Poggi Y, Appell J, Maret G: Large Micelles in Concentrated-Solutions - the 2nd Critical Micellar Concentration. J Phys Chem-Us 1984, 88(23):5713-5720.
13. Porte G, Gomati R, Elhaitamy O, Appell J, Marignan J: Morphological Transformations of the Primary Surfactant Structures in Brine-Rich Mixtures of Ternary-Systems (Surfactant Alcohol Brine). J Phys Chem-Us 1986, 90(22):5746-5751.
14. Kumar S, Aswal VK, Singh HN, Goyal PS, Kabiruddin: Growth of Sodium Dodecyl-Sulfate Micelles in the Presence of N-Octylamine. Langmuir 1994, 10(11):4069-4072.
15. Koehler RD, Raghavan SR, Kaler EW: Microstructure and dynamics of wormlike micellar solutions formed by mixing cationic and anionic surfactants. J Phys Chem B 2000, 104(47):11035-11044.
16. Bergstrom M, Pedersen JS: Formation of tablet-shaped and ribbonlike micelles in mixtures of an anionic and a cationic surfactant. Langmuir 1999, 15(7):2250-2253.
17. Raghavan SR, Fritz G, Kaler EW: Wormlike micelles formed by synergistic self-assembly in mixtures of anionic and cationic Surfactants. Langmuir 2002, 18(10):3797-3803.
18. Acharya DP, Kunieda H: Formation of viscoelastic wormlike micellar solutions in mixed nonionic surfactant systems. J Phys Chem B 2003, 107(37):10168-10175.
19. Gravsholt S: Viscoelasticity in Highly Dilute Aqueous-Solutions of Pure Cationic Detergents. Journal of Colloid and Interface Science 1976, 57(3):575-577.
20. Imae T, Ikeda S: Sphere Rod Transition of Micelles of Tetradecyltrimethylammonium Halides in Aqueous Sodium-Halide Solutions and Flexibility and Entanglement of Long Rodlike Micelles. J Phys Chem-Us 1986, 90(21):5216-5223.
21. Candau SJ, Hirsch E, Zana R, Adam M: Network Properties of Semidilute Aqueous Kbr Solutions of Cetyltrimethylammonium Bromide. Journal of Colloid and Interface Science 1988, 122(2):430-440.
22. Kern F, Lemarechal P, Candau SJ, Cates ME: Rheological Properties of Semidilute and Concentrated Aqueous-Solutions of Cetyltrimethylammonium Bromide in the Presence of Potassium-Bromide. Langmuir 1992, 8(2):437-440.
23. Olsson U, Soderman O, Guering P: Characterization of Micellar Aggregates in Viscoelastic Surfactant Solutions - a Nuclear-Magnetic-Resonance and Light-Scattering Study. J Phys Chem-Us 1986, 90(21):5223-5232.
24. Clausen TM, Vinson PK, Minter JR, Davis HT, Talmon Y, Miller WG: Viscoelastic Micellar Solutions - Microscopy and Rheology. J Phys Chem-Us 1992, 96(1):474-484.
25. Garg G, Hassan PA, Kulshreshtha SK: Dynamic light scattering studies of rod-like micelles in dilute and semi-dilute regime. Colloid Surface A 2006, 275(1-3):161-167.
26. Carver M, Smith TL, Gee JC, Delichere A, Caponetti E, Magid LJ: Tuning of micellar structure and dynamics in aqueous salt-free solutions of cetyltrimethylammonium mono- and dichlorobenzoates. Langmuir 1996, 12(3):691-698.
27. Ali AA, Makhloufi R: Effect of organic salts on micellar growth and structure studied by rheology. Colloid and Polymer Science 1999, 277(2-3):270-275.
28. Rehage H, Hoffmann H: Rheological Properties of Viscoelastic Surfactant Systems. J Phys Chem-Us 1988, 92(16):4712-4719.
29. Oelschlaeger C, Waton G, Candau SJ: Rheological behavior of locally cylindrical micelles in relation to their overall morphology. Langmuir 2003, 19(25):10495-10500.
30. Rao URK, Manohar C, Valaulikar BS, Iyer RM: Micellar Chain Model for the Origin of the Viscoelasticity in Dilute Surfactant Solutions. J Phys Chem-Us 1987, 91(12):3286-3291.
31. Lin Z, Cai JJ, Scriven LE, Davis HT: Spherical-to-Wormlike Micelle Transition in Ctab Solutions. J Phys Chem-Us 1994, 98(23):5984-5993.
32. Davies TS, Ketner AM, Raghavan SR: Self-assembly of surfactant vesicles that transform into viscoelastic wormlike micelles upon heating. J Am Chem Soc 2006, 128(20):6669-6675.
33. Ketner AM, Kumar R, Davies TS, Elder PW, Raghavan SR: A simple class of photorheological fluids: Surfactant solutions with viscosity tunable by light. J Am Chem Soc 2007, 129(6):1553-1559.
34. Kumar R, Ketner AM, Raghavan SR: Nonaqueous Photorheological Fluids Based on Light-Responsive Reverse Wormlike Micelles. Langmuir 2010, 26(8):5405-5411.
35. Shchipunov YA: Lecithin organogel - A micellar system with unique properties. Colloid Surface A 2001, 183:541-554.
36. Schurtenberger P, Scartazzini R, Luisi PL: Viscoelastic Properties of Polymer-Like Reverse Micelles. Rheol Acta 1989, 28(5):372-381.
37. Tung SH, Huang YE, Raghavan SR: Contrasting effects of temperature on the rheology of normal and reverse wormlike micelles. Langmuir 2007, 23(2):372-376.
38. Scartazzini R, Luisi PL: Organogels from Lecithins. J Phys Chem-Us 1988, 92(3):829-833.
39. Avramiotis S, Papadimitriou V, Hatzara E, Bekiari V, Lianos P, Xenakis A: Lecithin organogels used as bioactive compounds carriers. A microdomain properties investigation. Langmuir 2007, 23(8):4438-4447.
40. Huang CC, Xu H, Ryckaert JP: Kinetics and dynamic properties of equilibrium polymers. J Chem Phys 2006, 125(9):-.
41. Cates ME, Candau SJ: Statics and Dynamics of Worm-Like Surfactant Micelles. J Phys-Condens Mat 1990, 2(33):6869-6892.
42. Cates ME: Reptation of Living Polymers - Dynamics of Entangled Polymers in the Presence of Reversible Chain-Scission Reactions. Macromolecules 1987, 20(9):2289-2296.
43. Cates ME: Dynamics of Living Polymers and Flexible Surfactant Micelles - Scaling Laws for Dilution. J Phys-Paris 1988, 49(9):1593-1600.
44. Granek R, Cates ME: Stress-Relaxation in Living Polymers - Results from a Poisson Renewal Model. J Chem Phys 1992, 96(6):4758-4767.
45. Cates ME: Theoretical Modeling of Viscoelastic Phases. Structure and Flow in Surfactant Solutions 1994, 578:32-50.
46. Raghavan SR, Kaler EW: Highly viscoelastic wormlike micellar solutions formed by cationic surfactants with long unsaturated tails. Langmuir 2001, 17(2):300-306.
47. Liberatore MW, Nettesheim F, Wagner NJ, Porcar L: Spatially resolved small-angle neutron scattering in the 1-2 plane: A study of shear-induced phase-separating wormlike micelles. Phys Rev E 2006, 73(2).
48. Berret JF, Molino F, Porte G, Diat O, Lindner P: The shear-induced transition between oriented textures and layer-sliding-mediated flows in a micellar cubic crystal. J Phys-Condens Mat 1996, 8(47):9513-9517.
49. Berret JF, Gamez-Corrales R, Oberdisse J, Walker LM, Lindner P: Flow-structure relationship of shear-thickening surfactant solutions. Europhys Lett 1998, 41(6):677-682.
50. Lu B, Li X, Scriven LE, Davis HT, Talmon Y, Zakin JL: Effect of chemical structure on viscoelasticity and extensional viscosity of drag-reducing cationic surfactant solutions. Langmuir 1998, 14(1):8-16.
51. Keller SL, Boltenhagen P, Pine DJ, Zasadzinski JA: Direct observation of shear-induced structures in wormlike micellar solutions by freeze-fracture electron microscopy. Physical Review Letters 1998, 80(12):2725-2728.
52. Storm C, Pastore JJ, MacKintosh FC, Lubensky TC, Janmey PA: Nonlinear elasticity in biological gels. Nature 2005, 435(7039):191-194.
53. Xu JY, Tseng Y, Wirtz D: Strain hardening of actin filament networks - Regulation by the dynamic cross-linking protein alpha-actinin. J Biol Chem 2000, 275(46):35886-35892.
54. Gardel ML, Shin JH, MacKintosh FC, Mahadevan L, Matsudaira P, Weitz DA: Elastic Behavior of cross-linked and bundled actin networks. Science 2004, 304(5675):1301-1305.
55. Onck PR, Koeman T, van Dillen T, van der Giessen E: Alternative explanation of stiffening in cross-linked semiflexible networks. Physical Review Letters 2005, 95(17).
56. Onck P, Koeman T, van Dillen T, van der Giessen E: Alternative Explanation of Stiffening in Cross-Linked Semiflexible Networks. Physical Review Letters 2005, 95(17).
57. Tung SH, Raghavan SR: Strain-stiffening response in transient networks formed by reverse wormlike micelles. Langmuir 2008, 24(16):8405-8408.
58. Lakes RS: Viscoelastic Materials 2009.
59. Cannavacciuolo L, Sommer C, Pedersen JS, Schurtenberger P: Size, flexibility, and scattering functions of semiflexible polyelectrolytes with excluded volume effects: Monte Carlo simulations and neutron scattering experiments. Phys Rev E 2000, 62(4):5409-5419.
60. Cannavacciuolo L, Pedersen JS, Schurtenberger P: Single-coil properties and concentration effects for polyelectrolyte-like wormlike micelles: a Monte Carlo study. J Phys-Condens Mat 2002, 14(9):2283-2295.
61. Pedersen JS, Schurtenberger P: Scattering functions of semidilute solutions of polymers in a good solvent. J Polym Sci Pol Phys 2004, 42(17):3081-3094.
62. BrunnerPopela J, Glatter O: Small-angle scattering of interacting particles .1. Basic principles of a global evaluation technique. J Appl Crystallogr 1997, 30:431-442.
63. Weyerich B, Brunner-Popela J, Glatter O: Small-angle scattering of interacting particles. II. Generalized indirect Fourier transformation under consideration of the effective structure factor for polydisperse systems. J Appl Crystallogr 1999, 32:197-209.
64. Brunner-Popela J, Mittelbach R, Strey R, Schubert KV, Kaler EW, Glatter O: Small-angle scattering of interacting particles. III. D2O-C12E5 mixtures and microemulsions with n-octane. J Chem Phys 1999, 110(21):10623-10632.
65. Glatter O, Fritz G, Lindner H, Brunner-Popela J, Mittelbach R, Strey R, Egelhaaf SU: Nonionic micelles near the critical point: Micellar growth and attractive interaction. Langmuir 2000, 16(23):8692-8701.
66. Shikata T, Hirata H, Kotaka T: Micelle Formation of Detergent Molecules in Aqueous-Media - Viscoelastic Properties of Aqueous Cetyltrimethylammonium Bromide Solutions. Langmuir 1987, 3(6):1081-1086.
67. Shchipunov YA, Shumilina EV: Lecithin Bridging by Hydrogen-Bonds in the Organogel. Mat Sci Eng C-Biomim 1995, 3(1):43-50.
68. Shumilina EV, Khromova YL, Shchipunov YA: A study of the structure of lecithin organic gels by Fourier transform IR spectroscopy. Russ J Phys Chem+ 2000, 74(7):1083-1092.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39487-
dc.description.abstract雙親性分子在非極性有機溶劑中可自組裝形成反微胞(reverse micelle),文獻已報導藉由膽鹽(bile salt)的添加可以使卵磷脂(lecithin)在正癸烷溶液中形成反蠕蟲狀微胞,這種長鏈狀的微胞類似高分子鏈會在溶液中糾纏,大幅增加溶液黏度,甚至形成黏彈體。本研究進一步探討了四種不同膽鹽的影響,包含膽酸鈉(SC)、去氧膽酸鈉(SDC)、牛磺酸膽酸鈉(STC)、去氧牛磺酸膽酸鈉(STDC)。我們利用流變與小角度X光散射儀(SAXS)技術來分析反微胞溶液的性質與結構,這四種膽鹽皆可使卵磷脂由反球狀微胞轉變為反蠕蟲狀微胞,且反蠕蟲狀微胞溶液都符合流變學上單一鬆弛時間馬克斯威爾模型,但四種膽鹽誘發卵磷脂形成反蠕蟲狀微胞的能力卻不同,其效率由高至低為SC > SDC > STC > STDC。我們另外也探討膽酸(bile acid)的效應,膽酸的添加只會誘發卵磷脂形成較短的反柱狀微胞,沒辦法形成黏度很高的黏彈體。除此之外,我們改變溫度來觀察流變性質和結構上的變化,溫度的增加會使反蠕蟲狀微胞的長度大幅變短,降低了反蠕蟲狀微胞的流變參數,如高原模數、鬆弛時間與零剪切黏度,但蠕蟲狀微胞的半徑並不隨溫度而變化。
卵磷脂與添加物的作用力是驅動形成反蠕蟲狀微胞的原因,各種膽鹽和膽酸的基本化學結構相似,皆含有類固醇的環狀結構(steroid ring),彼此在結構上只有一個官能基不同與環狀結構上OH基的數目不同,但在誘發卵磷脂形成反蠕蟲狀微胞的效率上卻有很大的差異。為了解釋這個差異,我們藉由傅立葉轉換紅外光譜儀(FTIR)來研究卵磷脂與膽鹽、膽酸間的作用力,發現膽鹽是由環狀結構上的OH基與卵磷脂的磷酸根產生作用力,但膽酸主要是由COOH與卵磷脂磷酸根產生作用力。這些不同官能基的作用力與分子的尺寸決定了膽鹽或膽酸在卵磷脂之間的位置與影響範圍,使得卵磷脂的臨界堆疊參數(critical packing parameter, CPP)有不同幅度的改變,進而導致不同的引發反蠕蟲狀微胞效率。
zh_TW
dc.description.abstractAmphiphilic molecules self-assemble into reverse micelles in low-polar organic solvents. It has been reported that the addition of bile salts into lecithin organosols induces the formation of reverse wormlike micelles and the worms are similar to long polymer chains which entangle to form viscoelastic solutions. In this study, we further investigated the effects of four bile salts on the formation of lecithin reverse wormlike micelles, including sodium deoxycholate (SDC), sodium cholate (SC), sodium taurodeoxycholate (STDC) and sodium taurocholate (STC). We utilized rheological and small-angle x-ray scattering (SAXS) techniques to analyze the properties and structures of the reverse micelles. All the bile salts can transform the originally spherical lecithin reverse micelles into long wormlike micelles and their rheological behaviors can be described by the single-relaxation time Maxwell model. However, the abilities of the four bile salts to induce the worms are different and the order of efficiency is SC > SDC > STC > STDC. In addition to bile salts, we also studied the effect of bile acids and we found that bile acids can only cause the formation of short cylindrical micelles, which are not long enough to impart viscoelasticity. Furthermore, the temperature dependence of structures and rheological behaviors of lecithin/bile salts reverse wormlike micelles were investigated. Upon the increase of temperature, the lengths of the worms decrease dramatically, which in turn causes the decrease of plateau modulus G_p, relaxation time〖 τ〗_(R )and zero shear viscosity〖 η〗_0, while the radii of worms are almost independent of temperature.
The driving force for forming reverse wormlike micelles is the interactions between lecithin and additives. Different bile salts and bile acids have similar chemical structures, i.e. the steroid rings, except one of the functional group and the number of OH groups on the steroid rings. To explain why the abilities to induce reverse worms are different, we used Fourier transform infrared spectrometer (FTIR) to investigate the interactions between lecithin and the additives. We found that the interactions between bile salts and lecithin are the hydrogen bonds formed by the OH groups on steroid ring with the phosphate groups of lecithin molecule, while hydrogen bonds between bile acids and lecithin are mainly formed by the COOH groups of bile acids with the phosphate groups of lecithin. The interactions formed by different groups determine the position of the additives in the headgroups of lecithin. Along with different sizes of additive molecules, the effective critical packing parameter (CPP) of lecithin is altered differently, which we suggested is the reason responsible for the varying efficiencies of bile salts and bile acids to induce the formation of worms.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T17:29:45Z (GMT). No. of bitstreams: 1
ntu-100-R98549033-1.pdf: 3288910 bytes, checksum: 5e7613fe97883c8ee5619ce21d4f995d (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目錄
口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 雙親性分子的自組裝及蠕蟲狀微胞 3
2.2 雙親性分子與添加物的種類 6
2.3反蠕蟲狀微胞 10
2.4蠕蟲狀微胞的流變性質 13
2.4.1馬克斯威爾模型 13
2.4.2非線性流變性質 15
2.5 從散射技術得到蠕蟲狀微胞的結構資訊 19
第三章 實驗方法與儀器原理 23
3.1 實驗藥品 23
3.2 實驗步驟 27
3.2.1 樣品配製 27
卵磷脂與膽鹽(膽酸)形成之反蠕蟲狀微胞 27
卵磷脂與水形成之反蠕蟲狀微胞 27
3.2.2 儀器分析 27
流變儀 27
傅立葉轉換紅外光光譜儀 28
小角度X光散射儀 29
第四章 結果與討論 31
4.1卵磷脂與膽鹽形成之反蠕蟲狀微胞的相行為與流變性質 31
4.2 利用SAXS探測反蠕蟲狀微胞的結構資訊 47
4.3卵磷脂與膽鹽形成之反蠕蟲狀微胞的溫度效應 52
4.4卵磷脂與膽鹽(膽酸)間之作用力 70
4.5卵磷脂與膽鹽(膽酸)形成之反蠕蟲狀微胞的結構模型 89
第五章 結論 94
參考文獻 95
dc.language.isozh-TW
dc.subject流變zh_TW
dc.subject卵磷脂zh_TW
dc.subject膽鹽zh_TW
dc.subject膽酸zh_TW
dc.subject反微胞zh_TW
dc.subject蠕蟲狀微胞zh_TW
dc.subjectlecithinen
dc.subjectrheologyen
dc.subjectwormlike micellesen
dc.subjectreverse micellesen
dc.subjectbile aciden
dc.subjectbile salten
dc.title卵磷脂和膽鹽形成之反蠕蟲狀微胞的流變性質、溫度效應及誘發效率之研究zh_TW
dc.titleThe Rheology, Nanostructure and Formation Mechanism of Lecithin Reverse Wormlike Micelles Induced by Bile Saltsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴偉淇(Wei-Chi Lai),謝之真(Chih-Chen Hsieh)
dc.subject.keyword卵磷脂,膽鹽,膽酸,反微胞,蠕蟲狀微胞,流變,zh_TW
dc.subject.keywordlecithin,bile salt,bile acid,reverse micelles,wormlike micelles,rheology,en
dc.relation.page100
dc.rights.note有償授權
dc.date.accepted2011-08-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
3.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved