Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39469
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林智仁(Chih-Jen Lin)
dc.contributor.authorTzu-Jung Liuen
dc.contributor.author劉子榮zh_TW
dc.date.accessioned2021-06-13T17:29:17Z-
dc.date.available2004-07-28
dc.date.copyright2004-07-28
dc.date.issued2004
dc.date.submitted2004-07-20
dc.identifier.citation[1] R. R. Bailey, E. J. Pettit, R. T. Boro cho , M. T. Manry, and X. Jiang. Automatic recognition of usgs land use/cover categories using statistical and neural networks classi ers. In SPIE OE/Aerospace and Remote Sensing , Bellingham, WA, 1993. SPIE.
[2] C. L. Blake and C. J. Merz. UCI rep ository of machine learning databases. Technical rep ort, University of California, Department of Information and Computer Science, Irvine, CA, 1998. Available at http://www.ics.uci.edu/~mlearn/MLRepository.html.
[3] G. W. Brier. Veri cation of forecasts expressed in probabilities. Monthly Weather Review, 78:1–3, 1950.
[4] C.-C. Chang. Study on new supp ort vector machines. Master’s thesis, Department of Computer Science and Information Engineering, National Taiwan University, 2001.
[5] C.-C. Chang and C.-J. Lin. IJCNN 2001 challenge: Generalization ability and text deco ding. In Proceedings of IJCNN. IEEE, 2001.
[6] C.-W. Hsu, C.-C. Chang, and C.-J. Lin. A practical guide to supp ort vector classi cation. Technical rep ort, 2003.
[7] C.-J. Lin. Formulations of supp ort vector machines: a note from an optimization p oint of view. Neural Computation, 13(2):307–317, 2001.
[8] H.-T. Lin, C.-J. Lin, and R. C. Weng. A note on Platt’s probabilistic outputs for supp ort vector machines. Technical rep ort, Department of Computer Science and Information Engineering, National Taiwan University, 2003.
[9] S. G. Nash and A. Sofer. Linear and Nonlinear Programming. McGraw-Hill, 1996.
[10] J. No cedal and S. J. Wright. Numerical Optimization. Springer-Verlag, New York, NY, 1999.
[11] J. Platt. Probabilistic outputs for supp ort vector machines and comparison to regularized likeliho o d metho ds. In A. Smola, P. Bartlett, B. Sch‥olkopf, and D. Schuurmans, editors, Advances in Large Margin Classi ers, Cambridge, MA, 2000. MIT Press.
[12] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes: The Art of Scienti c Computing. Cambridge University Press, Cambridge (UK) and New York, 2nd edition, 1992.
[13] D. Prokhorov. IJCNN 2001 neural network comp etition. Slide presentation in IJCNN’01, Ford Research Lab oratory, 2001. http://www.geocities.com/ijcnn/nnc_ijcnn01.pdf.
[14] G. R‥atsch. Ensemble learning metho ds for classi cation. april 1998. Diploma thesis (in german).
[15] G. R‥atsch, T. Ono da, and K.-R. M ‥uller. Soft margins for AdaBo ost. Technical Rep ort NC-TR-1998-021, Department of Computer Science, Royal Holloway, University of London, Egham, UK, Aug. 1998. Submitted to Machine Learning.
[16] W. S. Sarle. Neural Network FAQ, 1997. Perio dic p osting to the Usenet news group comp.ai.neural-nets.
[17] V. Vapnik. Statistical Learning Theory. Wiley, New York, NY, 1998.
[18] T.-F. Wu, C.-J. Lin, and R. C. Weng. Probability estimates for multi-class classifcation by pairwise coupling. In Proceedings of NIPS 2003, 2003.
[19] B. Zadrozny and C. Elkan. Transforming classi er scores into accurate multi-class probability estimates. In Proceedings of the Eighth International Conference on Know ledge Discovery and Data Mining, 2002.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39469-
dc.description.abstractSupport vector machine (SVM) is a promising
technique for data classification
and regression.
However, it provides only decision values but not posterior probability
estimates.
As many applications require probability outputs,
it is essential to study how to transform SVM outputs to probability values.
In this thesis, we study and compare various methods.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T17:29:17Z (GMT). No. of bitstreams: 1
ntu-93-R91546024-1.pdf: 243473 bytes, checksum: 2535330b0cf35bda2dc81fceed376c51 (MD5)
Previous issue date: 2004
en
dc.description.tableofcontentsChapter 1. Introduction - 1
Chapter 2. Support Vector Machine - 3
Chapter 3. Probability Methods - 8
Chapter 4. Methods of Experiments - 21
Chapter 5. Results - 23
Chapter 6. Conclusions - 41
dc.language.isozh-TW
dc.subject機率輸出zh_TW
dc.subjectSVMen
dc.titleProbabilistic Output of Support Vector Machinesen
dc.typeThesis
dc.date.schoolyear91-2
dc.description.degree碩士
dc.contributor.coadvisor李育杰(Yuh-Jye Lee),雀v南(Chun-Nan Hsu),
dc.contributor.oralexamcommittee李育杰(yuh-jye@mail.ntust.edu.tw),雀v南(chunnan@iis.sinica.edu.tw),
dc.subject.keyword機率輸出,zh_TW
dc.subject.keywordSVM,en
dc.relation.page43
dc.rights.note有償授權
dc.date.accepted2004-07-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工業工程學研究所zh_TW
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-93-1.pdf
  未授權公開取用
237.77 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved