請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39447
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃坤祥 | |
dc.contributor.author | Guo-Jiun Shu | en |
dc.contributor.author | 殳國俊 | zh_TW |
dc.date.accessioned | 2021-06-13T17:28:45Z | - |
dc.date.available | 2004-10-19 | |
dc.date.copyright | 2004-10-19 | |
dc.date.issued | 2004 | |
dc.date.submitted | 2004-10-06 | |
dc.identifier.citation | REFERENCES
[1] R. M. German, Powder Injection Molding, Metal Powder Industries Federation, Princeton, NJ, 1990. [2] B. C. Mutsuddy and R. Ford, Ceramic Injection Molding, New York, NY, Chapman & Hall, 1995. [3] R. M. German and A. Bose, Injection Molding of Metals and Ceramics, Metal Powder Industries Federation, Princeton, NJ, 1997. [4] Chaman Lall, Soft Magnetism: Fundamentals for Powder Metallurgy and Metal Injection Molding, Metal Powder Industries Federation, Princeton, N. J., 1992. [5] K. M. Kulkarni, “A Study of MIM Feedstocks Made with Powder of Different Particle Size,” Advances in Powder Metallurgy, Edited by E. R. Andreotti and P. . McGeehan, MPIF, Princeton, NJ, 1990, Vol. 3, pp. 330-340. [6] MPIF Standard 35, Materials Standards for P/M Structural, Parts 2000 Edition, Metal Powder Industries Federation, Princeton, NJ. [7] William D. Callister, Jr., “Materials Science and Engineering An Introduction 6th”, John Wiley & Sons, Inc.. [8] 黃坤祥, “粉末冶金學,” 中華民國粉末冶金協會, 2001 [9] V. K. Pujari, “Effect of Powder Characteristics on Compounding and Green Microstructure in the Injection-Molding Process,” J. Am. Ceram. Soc., Vol. 72, No. 10, 1989, pp. 1981-1984. [10] R. J. Oscroft and E. A. Belfield, “Flow Behavior of Ceramic Injection Molding Suspensions: Effect of Particle Size Distribution,” Adv. Powder Metall. Part. Mater., Vol. 5, Part 19, compiled by T. M. Cadle and K. S. Narasimhan, Metal Powder Industrial Federation, Princeton, NJ, 1996, pp. 71-78. [11] Y. Tanaka and K. Nakayabayashi, “Metal Injection Moulding Powder Prodused by High Pressure Water Atomization,” Powder Metall., Vol. 41, No. 1, 1998, pp. 47-50. [12] Y. Kato, K. Nakayabashi, and T. Shimura, “PAMCO Powders Widen MIM Applications,” Metal Powder Report, Vol. 48, No. 10, 1993, pp. 32-36. [13] H. Miura and T. Honda, “Establishment of Metal Injection Molding (MIM) Process and Its Application,” Japan Soc. Powder Metall., Vol. 43, No. 7, 1996, pp. 829-839. [14] H. Miura, H. Gomdou, and T. Honda, “Effects of Powder Characteristics on the Metal Injection Molding Process of High Speed Steels,” Japan Soc. Powder Metall., Vol. 41, No. 1, 1994, pp. 9-13. [15] R. M. German and D. Kubish, “Evaluation of Injection Molded 17-4 PH Stainless Steel Using Water Atomized Powder,” Intl. J. Powder Metall., Vol. 29, No. 1, 1993, pp. 47-62. [16] W. J. Wei and Y. P. Lin, “Processing Character of MgO-Partially Stabilized Zirconiz (PSZ) in Size Grading Prepared by Injection Molding,” Journal of the European Ceramic Society, Vol. 18, 1998, pp. 2107-2116. [17] C. M. Kipphut and R. M. German, “Powder Selection for Shape Retention in Powder Injection Molding,” Intl. J. Powder Metall., Vol. 27, No. 2, 1991, pp. 117-124. [18] T. Hartwig, G. Veltl, H. Kunze, R. Scholl, and B. Kieback, “Powder for Metal Injection Molding,” Journal of the European Ceramic Society, Vol. 18, 1998, pp. 1211-1216. [19] F. Petzoldt, H. Eifert, T. Hartwig, L. Kramer, G. Veltl, and A. Pest, “Broadening the Scope of MIM,” Mater. & Manufacturing Processes, Vol. 12, No. 24, 1997, pp. 691-711. [20] F. Petzoldt, H. Eifert, T. Hartwig, and G. Veltl, “Binder Design and Process Control for High Performance MIM-Materials,” Adv. Powder Metall. Part. Mater., Vol. 6, compiled by M. Phillips and J. Porter, Metal Powder Industral Federation, Princeton, NJ, 1995, pp. 3-13. [21] K. F. Hens, S. T. Lin, R. M. German, and D. Lee, “The Effects of Binder on the Mechanical Properties of Carbonyl Iron Products,” J. Metal, No. 8, 1989, pp. 17-21. [22] M. Bloemacher and D. Weinand, “CatamoldTM- A New Direction for Powder Injection Molding,” J. Mater. Process. Tech., Vol. 63, 1997, pp. 918.922. [23] V. N. Shukla and David C. Hill, “Binder Evolution from Powder Compacts: Thermal Profiles for Injection-Molded Articles,” J. Am. Ceram. Soc. Vol. 72, No. 10, 1989, pp. 1797-1803. [24] C. I. Chung, B. O. Rhee, M. Y. Cao, and C. X. Liu, “Requirements of Binder for Powder Injection Molding,” Adv. Powder Metall. Part. Mater., Vol. 3, 1989, complied by T. G. Casbarres and W. F. Jandeska, Metal Powder Industrial Federation, Princeton, NJ, pp. 67-78. [25] K. C. Hsu and G. M. Lo, “Effect of Binder Composition on Rheology of Iron Powder Injection Moulding Feedstocks: Experimental Design,” Powder Metall., Vol. 39, No. 4, 1996, pp. 286-290. [26] S. J. Stedman, J. R. G. Evans, and J. Woodthorpe, “A Method for Selecting Organic Materials for Ceramic Injection Moulding,” Ceram. Int., Vol. 16, 1990, pp. 107-113. [27] K. S. Hwang, “Overview of Debinding Fundamentals and Practices,” Powder Injection Molding Technologies, edited by R. M. German, H. Wiesner, and R. G. Cornwall, 1998, pp. 173-180. [28] K. S. Hwang, “Fundamentals of Debinding Processes In Powder Injection Molding,” Rev. Part. Mater., Vol. 4, 1996, pp. 71-104. [29] R. M. German, “Theory of Thermal Debinding,” Intl. J. Powder Metall., Vol. 23, No. 4, 1987, pp. 237-245. [30] H. H. Angermann and O. V. D. Biest, “Removal of Low Molecular Weight Components In Thermal Debinding of MIM Compacts,” Intl. J. Powder Metall., Vol. 30, No. 4, 1994, pp. 445-452. [31] K. S. Hwang, H. K. Lin, and S. C. Lee, “Thermal, Solvent, and Vacuum Debinding Mechanisms of PIM Compacts,” Mater. & Manufacturing Processes, Vol. 12, No. 24, 1997, pp. 593-608. [32] M. Y. Anwar, P. F. Mwsser, B. Ellis, and H. A. Davies, “Injection Molding of 316L Stainless Steel Powder Using Novel Binder System,” Powder Metall., Vol. 38, No. 2, 1995, pp. 113-119. [33] D. Krueger, M. Bloemacher, and D. Weinand, “Rapid Catalytic Debinding MIM Feedstock: A New Technology Grows Into a Manufacturing Process,” Adv. Powder Metall. Part. Mater., Vol. 5, 1993, compiled by A. Lawley and A. Swanson, Metal Powder Industrial Federation, Princeton, NJ, pp. 165-180. [34] D. C. Krueger, “Powder Injection Molding- Catalytic Debinding System,” Adv. Powder Metall. Part. Mater., Vol. 4, 1994, complied by C. Lall and A. J. Neupaver, Metal Powder Industrial Federation, Princeton, NJ, pp. 47-70. [35] D. C. Krueger, P. Trubenbach, and J. Ebenhoech, “Powder Injection Molding Catalytic Debinding System- Influence of the Oven Atmosphere on the Process,” Adv. Powder Metall. Part. Mater., Vol. 6, complied by M. Phillips and J. Porter, Metal Powder Industrial Federation, Princeton, NJ, 1995, pp. 169-178. [36] K. F. Hens, T. . Roche, and J. A. Grohowski, “Thermal Sets Up for Precision PIM,” Metal Powder Report, Vol. 51, No. 6, 1996, pp. 28-31. [37] C. W. Finn, “Vacuum Binder Removal and Collection,” Intl. J. Powder Metall., Vol. 27, No. 2, 1991, pp. 127-132. [38] M. R. Wegmann, E. Olson, and W. Z. Misiolek, “Dimensional Control in Powder Injection Molded Fe-2%Ni,” Adv. Powder Metall. Part. Mater., Vol. 5, 1993, complied by A. Lawley and A. Swanson, Metal Powder Industrial Federation, Princeton, NJ, pp. 133-140. [39] T. J. Weaver and R. M. German, “Achieving Real Dimensional Control of | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39447 | - |
dc.description.abstract | 金屬粉末射出成形製程適合製作形狀複雜的零件,但是其產品的尺寸穩定性卻不如傳統粉末冶金容易控制,其中最主要的原因為工件在燒結過程中會產生10~20%的線性收縮。為了改善金屬粉末射出成形工件之尺寸穩定性,本研究分析了在燒結過程中之尺寸變化。在實驗過程中,藉由熱膨脹儀的協助,分析在燒結過程中試片的in-situ尺寸變化並探討其可能對尺寸穩定性造成的影響。
羰基鐵粉的試片由於在燒結過程中會發生alpha-gama相變態,造成試片在發生相變態時產生急遽的尺寸收縮,使得其尺寸不易控制。此問題可以藉由添加合金元素來避免或減緩相變態發生來改善。在不 | zh_TW |
dc.description.abstract | Powder injection molded (PIM) parts usually incur large amounts of shrinkage after sintering due to their low solid content and resulting poor dimensional stability. This problem is further aggravated when a high shrinkage rate occurs or when the furnace temperature is not uniform. To alleviate this dimensional control problem, the effects of the phase transformation, sintering temperature, and heating rate were investigated. The results show that when an abrupt volume change occurs, as happens during the alpha-gama phase transformation of iron, the dimensional stability deteriorates. This problem gets worse when the density of the part is low. By slowing down the heating rate in the region where the high shrinkage rate occurs, avoiding the phase changes, and adding alloying elements to broaden the temperature range of the phase transformation, the dimensional control of ferrous PIM compacts can be improved.
316L stainless steels usually use relatively coarse atomized powders. Thus, high-temperature sintering and, sometimes, liquid phase sintering is needed in order to get densities greater than 95%. With the formation of the liquid phase, the dimensional control problem occurs, despites of its beneficial effect of increasing the sintered density. To improve the dimensional control, a slow heating rate and dual phase sintering are recommended. Carbonyl iron powders are the most widely used raw powder in PIM components owing to their high driving forces for sintering. However, the cost of this powder is relatively high. To improve the competitiveness of the PIM process, coarse iron powders, which are much more economical, were mixed with fine carbonyl iron powders in an optimum ratio of 6/4 in this study. This replacement of fine carbonyl iron powders did not change the kneading and molding behaviors significantly. The solvent and thermal debinding rates of the compacts that contain 100% and 40% fine powders also showed little difference. Such debinding results, which are contrary to the general belief, suggest that the particle size is not the critical factor in the debinding of PIM compacts. The debinding rate is more likely controlled by the diffusion of the soluble binder in the solvent (for solvent debinding) and the decomposition rate of the backbone binder (for thermal debinding). High sintered densities can still be attained in the compact with mixed powders after | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T17:28:45Z (GMT). No. of bitstreams: 1 ntu-93-D90527006-1.pdf: 17187898 bytes, checksum: 8582b23f3a6bffd505eed663df594db5 (MD5) Previous issue date: 2004 | en |
dc.description.tableofcontents | 目 錄
第一章、 簡介………………………………………………………1 第二章、文獻回顧………………………………………………..5 2-1 射料的準備(Feedstock preparation)……………………….6 2-1-1 粉末性質………………………………………………….6 2-1-2 黏結劑性質……………………………………………….7 2-2 射出成形(Injection molding)……………………………..7 2-3 脫脂(Debinding)…………………………………………….8 2-4 燒結(Sintering)…………………………………………….10 2-4-1 粉末固含量與燒結體收縮量的關係…………………...10 2-4-2 燒結參數對尺寸穩定性的影響…………………………11 2-4-3 燒結時缺陷的形成與成因……………………………...12 2-4-3-1 非等向性或不均勻的收縮…………………………12 2-4-3-2 變形與破裂…………………………………………13 2-4-4 鐵粉的相變態行為對燒結密度之影響………………...16 2-4-5 和 | |
dc.language.iso | zh-TW | |
dc.title | MIM工件之尺寸穩定性與緻密性之研究 | zh_TW |
dc.title | The study of dimensional stability and densification for PIM parts | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 韋文誠,段維新,潘永村,葉建宏 | |
dc.subject.keyword | 燒結緻密性,燒結,金屬粉末射出成形,脫脂行為,粉末大小,alpha相穩定元素,熱膨脹儀,尺寸穩定性, | zh_TW |
dc.subject.keyword | particle size,Powder injection molding,dimensional control,debinding behavior,dilatometer,alpha phase stabilizer,densification,sintering, | en |
dc.relation.page | 206 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2004-10-06 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-93-1.pdf 目前未授權公開取用 | 16.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。