Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39432
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor簡淑華
dc.contributor.authorYu-Cheng Liuen
dc.contributor.author劉育成zh_TW
dc.date.accessioned2021-06-13T17:28:23Z-
dc.date.available2007-10-19
dc.date.copyright2004-10-19
dc.date.issued2004
dc.date.submitted2004-10-14
dc.identifier.citation1. K. J. Klabunde, Nanoscale Materials in Chemistry, John Wiley & Sons, Inc., New York, 2001.
2. 龔建華、林唯芳,你不可不知的奈米科技,世茂出版社,台北縣新店市,2002。
3. A. J. Bard, Integrated Chemical Systems, John Wiley & Sons, Inc., New York, 1994. p.279
4. M. R. Hoffmann, S. T. Martin, W. Choi. D. W. Bahnemann, Chem. Rev. 95, 69 (1995). “Environmental Applications of Semiconductor Photocatalysis”
5. H. Weller, A. Fojtik, A. Henglein, Chem. Phys. Lett.117, 485 (1985). “Photochemistry of Semiconductor Colloids : Properties of Extremely Small particles of Cd3P2 and Zn3P2”
6. K. J. Klabunde, J. Stark, O. Koper, C. Mohs, D. G. Park, S. Decker, Y. Jiang, I. Lagadic, D. Zhang, J. Phys. Chem., 100, 12142 (1996). “Nanocrystals as Stoichiometric Reagents with Unique Surface Chemistry”
7. J. R. Anderson, Structure of Metallic Catalysts, Academic Press, London, 1975.
8. H. J. Dai, E. W. Wong, C. M. Liber, Science 272, 523 (1996). “Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes”
9. T. W. Odam, J. L. Huang, P. kim, C. M. Lieber, Nature 391, 62 (1998). “Atomic Structure and Electronic Properties of Single-Walled Carbon Nanotubes”
10. G. Hodes, Electrochemistry of Nanomaterials, Wiley-VCH, Inc., New York, 2001.
11. K. P. de Jong, Preparation of Catalysts V, Elserier Science Publishers B. V., Amsterdam, 1991, 19. “Deposition Precipitation onto Pre-shaped carrier bodies. Possibilities and Limitations”
12. B. B. Lakshmi, C. J. Patrissi, C. R. Martin, Chem. Mater. 9, 2544 (1997). “Sol-Gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures”
13. O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, E. C. Dicky, C. A. Grimes, Adv. Mater. 15(7-8), 624 (2003). “Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure”
14. F. Mafune, J. -Y. Kohono, Y. Takeda, T. Kondow, J. Phys. Chem. B., 104, 9111 (2000) “Formation and Size Control of Silver Nanoparticles in Aqueous Solution Produced by Laser Ablation”
15. F. Mafune, J. -Y. Kohono, Y. Takeda, T. Kondow, H. Sawabe, J. Phys. Chem. B., 104, 8333 (2000). “Structure and Stability of Silver Nanoparticles in Aqueous Solution Produced by Laser Ablation”
16. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Mater. 11, 1307 (1999). “Titania Nanotubes Prepared by Chemical Processing”
17. 楊宗志、黃袓恩、譚慶麟、馬光辰、闕振寰、段維垣、劉時杰,中國大百科全書智慧藏,智慧藏學習科技公司,台北,2001。
18. C.-G. Wu, L.-F. Tzeng, Y.-T. Kuo, C. H. Shu, Appl. Catal. A : General 226, 199 (2002). “Enhancement of the Phtotcatalytic Activity of TiO2 film via Surface modification of the Substrate”
19. A. D. Paola, G. Marci, L. Palmisano, M. Schiavello, K. Uosaki, S. Ikeda, B. Ohtani, J. Phys. Chem. B 106, 637 (2002). “Preparation of Polycrystalline TiO2 Photocatalysts Impregenated with Various Transition Metal Ions: Characterization and Phtotcatalytic Activity for the Degradation of 4-Nitrophenol”
20. G. Colon, M. C. Hidalgo, J. A. Navio, Appl. Catal. A : General 231, 185 (2002). “Effect of ZrO2 Incorporation and Calcinations Temperature on the Photocatalytic Activity of Commercial TiO2 for Salicylic Acid and Cr (VI) Photodegradation”
21. S. Goeringer, C. R. Chenthamarakshan, K. Rajeshwar, Electrochem. Commun. 3, 290 (2001). “Synergistic Photocatalysis Mediated by TiO2 : Mutual Rate Enchancement in the Photoreduction of Cr(VI) and Cu(II) in Aqueous Media”
22. I.-H. Tseng, W.-C. Chang, J. C. S. Wu, Appl. Catal. B : Environmental 37, 37 (2002). “Photoreduction of CO2 Using Sol-gel Derived Titania and Titania- Supported Copper Catalysts”
23. 藤嵨昭、橋本和仁、渡部俊也,光清淨革命 – 活躍的二氧化鈦光觸媒,日本,1997。中文譯本,張立群譯,協志工業叢書,2000。
24. U. Diebold, Surf. Sci. Reports, 48, 53 (2003). “The Surface Science of Titanium Dioxide”
25. A. L. Linsebigler, G. Lu, J. T. Y. Jr, Chem. Rev. 95, 735 (1995). “Photocatalysis on TiO2 Surface: Principles, Mechanism, and Selected Results”
26. ICDD-JCPDS database of crystallographic data, 1997.
JCPDS Card. No. 21-1272 (Anatase), No. 21-1276 (Rutile), and No. 15-0875 (Brookite).
27. S.-H. Chien, Y.-W. Wei, K. N. Lu, Bull. Inst. Chem., Academia. Sinica. 39, 59 (1992). “Studies of TiO2 - Containing Nickel Catalysts”
28. M. A. Vannice, J. Catal. 74, 199 (1982). “Titania-Supported Metals as CO Hydrogenation Catalysts”
29. S. Iijima, Nature 354, 56 (1991). “Helical microtubules of Graphitic Carbon”
30. M. E. Spahr, P. Bitterli, R. Nesper, M. Müller, F. Krumeich, H. U. Nissen, Angew. Chem. Int. Ed. 37, 1263 (1998). “Redox-Active Nanotubes of Vanadium Oxide”
31. Y. D. Li, X. L. Li, R. R. He, J. Zhu, and Z. X. Deng, J. Am. Chem. Soc. 124, 1411 2002. “Artificial Lamellar Mesostructures to WS2 Nanotubes”
32. J. A. Hollingsworth, D. M. Poojary, A. Clearfied, W. E. Buhro, J. Am. Chem. Soc. 122, 3562 (2000). “Catalyzed Growth of a Metastabe InS Crystal Structure as Colloidal Crystals”
33. Y. D. Li, J. W. Wang, Z. X. Deng, Y. Y. Wu, X. M. Sun, D. P. Yu, P. D. Yang, J. Am. Chem. Soc. 123, 9904 (2001). “Bismuth Nanotubes : A Rational Low-Temperature Synthetic Route”
34. Y. R. Hachohen, E. Grunbaum, J. Sloan, J. L. Hutchison, R. Tenne, Nature 395, 336 (1998). “Cage Structures and nanotubes of NiCl2”
35. X. Shi, S. Han, R. J. Sanedrin, F. Zhou, M. Selke, Chem. Mater. 14, 1897 (2002). “Synthesis of Cobalt Oxide Nanotubes from Colloidal Particles Modified with a Co(III)-Cysteinato Precursor”
36. P. Hoyer, Langmuir 12, 141. (1996). “Formation of a Titanium Dioxide Nanotube Array ”
37. P. Hoyer, Adv. Mater. 8, 857 (1996). “Semiconductor Nanotube Formation by a Two-Step Template Process ”
38. S. M. Liu, L. M. Gan, L. H. Liu, W. D. Zhang, H. C. Zeng, Chem. Mater. 14, 1391 (2002). “Synthesis of Single-Crystalline TiO2 Nanotubes”
39. H. Imai, M. Matsuta, K. Shimizu, H. Hirashima, N. Negishi, Solid State Ionics 151, 183 (2002). “Morphology Transcription with TiO2 Using Chemical Solution Growth and Its Application for Photocatalysts”
40. S. Kobayashi, K. Hanabusa, N. Hamasaki, M. Kimura, H. Shirai, Chem. Mater. 12, 1523 (2000). “Preparation of TiO2 Hollow-Fibers Using Supramolecular Assemblies”
41. J. H. Jung, H. Kobayashi, K. J. C. van Bommel, S. Shinkai, T. Shimizu, Chem. Mater. 14, 1445 (2002). “Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2 Structures using an Organogel Template”
42. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Nihara, Langmuir 14, 3160 (1998). “Formation of Titanium Oxide Nanotube”
43. Q. Zhang, L. Gao, J. Sun, S. Zheng, Chem. Lett. 2, 226 (2002). “Preparation of Long TiO2 Nanotubes from Ultrafine Rutile Nanocrystals”
44. G.-H. Du, Q. Chen, R.-C. Che, Z.-Y. Yuan, L.-M. Peng, Appl. Phys. Lett. 79, 3702 (2001). “Preparation and Structure Analysis of Titanium Oxide Nanotubes”
45. S. Zhang, J. Zhou, Z. Zhang, Zuliang, Du, A. V. Vorontsov, Z. Jin, Chin. Sci. Bull. 45, 1533 (2000). “Morphological Structure and Physicochemical Properties of Nanotube TiO2”
46. D.-S. Seo, J.-K. Lee, H. Kim, Journal of Crystal Growth 229, 428 (2001). “Preparation of Nanotube-Shaped TiO2 Powder ”
47. Y.-F. Chen, , C.-Y. Lee, M.-Y. Yeng, H.-T. Chiu, Mater. Chem. Phys., 81, 39 (2003). “Preparing Titanium Oxide with Various Morphologies”
48. Y. Q. Wang, G. Q. Hu, X. F.Duan, H. L. Sun, Q. K. Xue, Chem. Phys. Lett., 365, 427 (2002). “Microstructure and Formation Mechanism of Titanium Dioxide Nanotubes”
49. C.-H. Lin, S.-H. Chien, J.-H. Chao, C.-Y. Sheu, Y.-C Cheng, Y.-J. Huang, C.-H. Tsai, Catal. Lett. 80, 153 (2002). “The Synthesis of Sulfated Titanium Oxide Nanotubes”
50. B. D. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z. Y. Yang, N. Wang, Appl. Phys. Lett. 82, 281 (2003). “Formation Mechanism of TiO2 Nanotubes”
51. Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, H. Xu., J. Am. Chem. Soc. 125, 12384 (2003). “Large Oriented Arrays and Continuous Films of TiO2-Based Nanotubes”
52. Q. Chen, G. H. Du, S. Zhang, L. M. Peng, Acta. Cryst. B58, 587 (2002). “The Structure of Trititanate Nanotubes”
53. Q. Chen, W. Zhou, G. Du, L. M. Peng, Adv. Mater. 14, 1208 (2002). “Trititanate Nanotubes Made via a Single Alkali Treatment”
54. X. Sun, Y. Li, Chem. Eur. J. 9, 2229 (2003). “Synthesis and Characterization of Ion-Exchangeable Titanate Nanotubes”
55. R. Ma, Y. Bando, T. Sasaki, Chem. Phys. Lett. 380, 577 (2003). “Nanotubes of Lepidocrocite Titanates”
56. S. Zhang, W. Li, Z. Jin, J. Yang, J. Zhang, Z, Du, Z. Zhang, J. Solid State Chem. 117, 1365 (2004). “Study on ESR and Inter-related Properties of Vacuum-Dehydrated Nanotubed Titanic Acid”
57. J. Yang, Z. Jin, X. Wang, W. Li, J. Zhang, S. Zhang, X. Guo, Z. Zhang, Dalton Trans., 3898 (2003). “Study on Composition, Structure and Formation Process of Nanotube Na2Ti2O4(OH)2”
58. M. Zhang, Z. Jin, J. Zhang, X. Guo, J. Yang, W. Li, X. Wang, Z. Zhang, J. Mol. Catal. A.: Chem., 217, 203 (2004). “Effect of Annealing Temperature on Morphology, Structure and Photocatalytic Behavior of Nanotubed Na2Ti2O4(OH)2”
59. A. Nakahira, W. Kato, M. Tamai, T. Isshiki, K. Nishio, J. Mater. Sci., 39, 4239 (2004). “Synthesis of Nanotube from a Layered H2Ti4O9•H2O in A Hydrothermal Treatment Using Various Titania Source”
60. M. Adachi. Y. Murata, M. Harada, and S. Yoshikawa, Chem. Lett., 942 (2000). “Formation of Titania Nanotubes with High Photo-Catalytic Activity”
61. S. J. Tauster, S. C. Fung, R. L. Garten, J. Am. Chem. Soc. 100, 170 (1978). “Strong Metal-Support Interactions. Group 8 Noble Metals Supported on TiO2”
62. J. A. Horsley, J. Am. Chem. Soc. 101, 2870 (1979). “A Molecular Orbital Study of Strong Metal-Support Interaction between Platinum and Titanium Dioxide”
63. S. J. Tauster, S. C. Fung, R. T. K. Baker, J. A. Horsley, Science 211, 1121 (1981). “Strong Interactions in Metal-Support Catalysts”
64. M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, J. Catal., 115, 301 (1989). “Gold Catalysts Prepared by Co-precipitation for Low-Temperature Oxidation of Hydrogen and Carbon Monoxide”
65. M. Kang , M. W. Song, C. H. Lee, Mater. App. Catal. A: General 251, 143 (2003). “Catalytic Carbon Monoxide Oxidation over CoOx/CeO2 Composite Catalysts”
66. Y. G. Borodko, L. Ioffe, T. Halachev, P. Bosch, A. Cuan, I. N. Ivleva, Y. M. Shulga, Mater. Chem. and Phys. 58, 199 (1999). “Interaction of Pt/TiO2 samples with H2 and O2 :magnetic and structural properties”
67. C. N. Satterfie, Heterogeneous Catalysis in Industrial Practice, 2nd ed, McGraw- Hill, Inc., pp.186-197, America, 1999.
68. M. Haruta, S. Taubota, T. Kobayashi, H. Kageyama, M. J. Genet, B. Delmon, J. Catal., 144, 175 (1993). “Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3 and CoO4”
69. S. Tsubota, M. Haruta, T. Kobayashi, A. Ueda, and Y. Nakahara, Preparation of Catalysts V, Elsevier Science Publishers B. V., Amsterdam, 1991, p.695. “Preparation of Highly Dispersed Gold on Titanium and Magnesium Oxide”
70. 張兆網,碩士論文,國立清華大學化學系,新竹,1997。 “Au/Al2O3的製備和特性探討。”
71. L. Fan, N. Ichikuni, S. Shimazu, T. Uematsu, Appl. Catal. A, 246, 78 (2003). “Preparation of Au/TiO2 Catalysts by Suspension Spray Reaction Method and Their Catalytic Property for CO Oxidation.”
72. D. Li, N. Ichikuni, S. Shimazu, T. Uematsu, Appl. Catal. A, 172, 351 (1998). “Catalytic Properties of Sprayed Ru/Al2O3 and Promoter Effects of Alkali Metals in CO2 Hydrogenation”
73. D. Li, N. Ichikuni, S. Shimazu, T. Uematsu, Appl. Catal. A, 180, 227 (1999). “Hydrogenation of CO2 over Sprayed Ru/TiO2 Fine Particles and Strong Metal–Support Interaction”
74. T. Tsuchiya, N. Ichikuni, S. Shimazu, T. Uematsu, Chem. Lett., 246, 652 (2000). “Preparation of Au/TiO2 Catalysts by Suspension Spray Reaction Method and Their Catalytic Property for CO Oxidation.”
75. B. Kraeutler, and A. J. Bard, J. Am. Chem. Soc. 100, 4317 (1978). “Heterogeneous Photocatalytic Preparation of Supported Catalysts. Photodeposition of Platinum on TiO2 Powder and Other Substrates”
76. 呂卦南,博士論文,國立台灣大學化學系,台北,1995。 “二氧化鈦擔體鉑與銠觸媒之研究:光催化製備法、擔體效應與一氧化碳及一氧化氮之吸附與反應。”
77. J. M. Herrmann, J. Catal. 89, 404 (1984). “Electron Effects in Strong Metal-Support Interaction on Titania Deposited Metal Catalysts”
78. S.-H. Chien, K.-N. Lu, C.-T. Chen, Bull. Inst. Chem., Academia Sinica 40, 37 (1993). “Photocatalytic Preparation and Characterization of Pt / TiO2 Catalyst”
79. A. J. Bard, L. R. Faulkner, Electrochemical Methods – Fundamentals and Applications, John Wiley & Sons, Inc., New York, 1980, p699-700.
80. P. C. Anastas, J. C. Warner, Green Chemistry : Theory and Practice, Oxford University Press, New York, 1998.
81. M. Lancaster, Green Chemistry : An Introductory Text, Royal Society of Chemistry, Cambridge, 2002.
82. G. C. Bond, Heterogeneous Catalysis : Principles and Applications, 2nd ed, Oxford Chemistry Series, 1987.
83. 房鼎業、施亞鈞,中國大百科全書智慧藏,智慧藏學習科技公司,台北,2001。
84. E. Giamello, D. Murphy, G. Magnacca, C. Morterra, Y. Shioya, T. Nomura, M. Anpo, J. Catal., 136, 510 (1992). “The Interaction of NO with Copper Ions in ZSM5 : An EPR and IR Investigation”
85. M. Shelef, Chem. Rev. 95, 209 (1995). “Selective Catalytic Reduction of NOx with N-Free Reductants”
86. A. Kudo, M. Steinberg, A. J. Bard, A. Campion, M. A. Fox, T. E. Mallouk, S. E. Webber, J. M. White, J. Catal. 125, 565 (1990). “Reduction at 300K of NO by CO over Supported Platinum Catalysts”
87. R. L. Kelein, S. Schwartz, L. D. Schmidt, J. Phys. Chem. 89, 4908 (1985). “Kinetics of the NO + CO Reaction on Clean Pt : Steady – State Rates”
88. H. Kusama, K. K. Brando, K. Okabe, H. Arakawa, Appl. Catal. A : Gereral 197, 255 (2000). “Effect of Metal Loading on CO2 hydrogenation Reactivity over Rh/SiO2 Catalysts”
89. S. Sakahara, K. Yajima, R. Belosludov, S. Takami, M. Kubo, A. Miyamoto, Appl. Surf. Sci. 189, 253 (2002). “Combinatorial Computational Chemistry Approach to the Design of Methanol Synthesis Catalyst”
90. M. A. Vannice, C. Sndhakar, J. Phys. Chem. 88, 2429 (1984). “A Model for the Metal-Support Effecct Enhancing CO Hydrogenation Rates over Pt-TiO2 Catalysts”
91. S. M. Fang, J. M. White, T. J. Campione, J. A. Ekerdt, J. Catal. 96, 491 (1985). “Effect of Pretreatment on Pt/Al2O3 and Pt + Re/ Al2O3 Catalyst Deactivation”
92. 林鴻冠,碩士論文,中正理工學院應用化學系,桃園,2002。 “氧化鈷及CoOx/MCM-41的特性分析與對一氧化碳氧化反應之研究。”
93. 魏碧玉,博士論文,大同大學材料工程學系,台北,2003。 “單壁奈米碳管氣體吸附現象及其氣體感測器應用之研究。”
94. 曾永寬,碩士論文,國立中山大學化學研究所,高雄,1991。 “烷烴異構化反應所用之鉑/沸石觸媒之研究。”
95. A. W. Adamson, Physical Chemistry of Surfaces, 5th, John Wiley & Sons, Inc., New York, 1990.
96. G. T. Went, S. T. Oyama, A. T. Bell, J. Phys. Chem. 94, 4240 (1990). “Laser Raman Spectroscopy of Supported Vanadium Oxide Catalysts”
97. E. P. Reddy, L. Davydov, P. G. Smirniotis, J. Phys. Chem. B 106, 3394 (2002). “Characterization of Titania Loaded V-, Fe-, and Cr-Incorporated MCM-41 by XRD, TPR, UV-Vis, Raman, and Techniques”
98. C. H. Rhee and J. S. Lee, Catalysis Today 38, 231 (1997). “Preparation and Characterization of Titanium-Substituted MCM-41”
99. K. Ikeue, S. Nozaki, M. Ogawa, M. Anpo, Catal. Today 74, 241 (2002). “Characterization of Self-Standing Ti-Containing Porous Silica Thin Films and Their Reactivity for the Photocatalytic Reduction of CO2 with H2O”
100. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985). “Reporting Physisorption Data For Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity”
101. S. Brunauer, P. H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309 (1938). “Adsorption of Gases in Mutlimolecular Layers”
102. A, R. West, Basic Solid State Chemistry 2ed, John Wiley & Sons, Inc., New York, 1999. p.418
103. Y. G. Borodko, L. Ioffe, T. Halachev, P. Bosch, A. Cuan, I. N. Ivleva, Y. M. Shulga, Mater. Chem. and Phys. 58, 199 (1999). “Interaction of Pt/TiO2 Samples with H2 and O2 : Magnetic and Structural Properties”
104. Y.-C. Liou, M.-C. Kuo and S.-H. Chien, in The 21st Taiwan Symposium on Catalysis and Reaction Engineering & The 3rd Conference of the Indo-Pacific Catalysis Association, P-II-30, Taipei, Taiwan (2003). “Formation and Characterization of Pt/TiO2 Nanotubes Catalysts”
105. J. D. I. JR, and S. R. Crouch, Spectrochemical Analysis, Prentice-Hill, New Jersey, 1998, pp. 373-374.
106. B.E. Hayden, A. King, M. A. Newton, N. Yoshikawa J. Mol. Catal. A. 167, 33, (2001). “Single Crystal and High Area Titania Supported Rhodium: The Interaction of Supported Rh(CO)2 with NO”
107. A. -G. Rincn, C. Pulgarin, Appl. Cataly. B: Environmental 51, 283 (2004). “Effect of pH, Inorganic Ions, Organic Matter and H2O2 on E. Coli. K12 Photocatalytic Inactivation by TiO2 Implications in Solar Water Disinfection.”
108. 黃冠群,碩士論文,國立台灣大學化學研究所,台北,2003。 “含鈦孔洞物質之合成、結構特性與催化反應。”
109. 林立桓,碩士論文,國立中央大學化學研究所,台北,2003。 “二氧化鈦修飾之含鉻鈦MCM-41 分子篩之製備、結構特性與催化性質。”
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/39432-
dc.description.abstract本論文研究二氧化鈦奈米管 (titanium oxide nanotube) 擔體金屬觸媒的製備及結構特性分析。本研究探討水熱及迴流不同加熱方式、不同的二氧化鈦來源、改變水熱時間及清洗溶液對於製備二氧化鈦奈米管之影響。製備是特性分析是以電子顯微鏡技術、粉末X-射線繞射圖譜、熱重分析、原子吸收光譜、雷射拉曼光譜、紫外線-可見光光譜、氮氣等溫吸附-脫附實驗測定。以Merck TiO2奈米顆粒加入10 M- NaOH(aq) 中,於110 ℃水熱92小時再以0.10 M-HCl(aq) 清洗製得的二氧化鈦奈米管,具有高表面積,由穿透式電子顯微鏡觀察奈米管的外徑為 10 nm,內徑為 6 nm,管壁為2-5 層,層與層之間的距離為0.84 nm。以各式不同晶型及顆粒大小的二氧化鈦來進行奈米管的製備,發現二氧化鈦顆粒大小為奈米管製備主要的影響因素。以顆粒較大的二氧化鈦Merck TiO2水熱20小時已有奈米管成生,但仍有部分顆粒未轉變為管狀結構;在經水熱92小時後,所有的顆粒已完全轉變成奈米管。而改變清洗的溶液為0.10 M-HNO3及0.10 M-H2SO4時,可得到相同的奈米管,但對於鈉的去除效果較不理想。
Pt、Rh及Au三種不同擔體金屬觸媒是藉由光化學沉積法 (photochemical deposition) 以二氧化鈦奈米管作為擔體製得。以氫氣及一氧化碳化學吸附實驗、流式微反應系統及原位紅外線光譜測量觸媒對各反應氣體催化之轉換率及選擇性。粉末X-射線繞射圖譜及電子顯微鏡結果顯示加入金屬後仍保持原奈米管之結構特性。氫氣及一氧化碳化學吸附結果顯示金屬的分散度以銠觸媒最佳,其次為鉑觸媒,金觸媒最差。奈米管擔體金屬觸媒在NO/CO反應、CO2 hydrogenation 及CO oxidation反應有非常好的催化活性,這是因為以奈米管作為擔體因表面積較高,金屬在奈米管上有較佳的分散性。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-13T17:28:23Z (GMT). No. of bitstreams: 1
ntu-93-D88223007-1.pdf: 9486323 bytes, checksum: f4fe4740d143acb3a5272455ea924899 (MD5)
Previous issue date: 2004
en
dc.description.tableofcontents目 錄
頁次
摘要
目錄
圖目錄
表目錄
第一章 緒論 1
1.1 奈米科技 1
1.2 二氧化鈦奈米管之製備 4
1.3 擔體金屬觸媒之製備 9
1.4 觸媒在環境保護上的應用 15
1.4-1 NOx與CO去除反應 15
1.4-2 Methanation甲烷形成反應 17
1.4-3 低溫一氧化碳氧化消除反應 18
1.5 研究目標 18
第二章 實驗 20
2.1 二氧化鈦奈米管之製備 20
2.2 擔體金屬觸媒之製備 – 光化學沉積法 24
2.3 觸媒之特性分析 28
2.3-1 結構鑑定: 28
(a) 粉末X -射線繞射圖譜 28
(b) 雷射拉曼光譜 28
(c) X-射線吸收精細結構光譜 29
(d) 熱重分析 29
2.3-2 組成分析: 29
(a) 掃瞄式電子顯微鏡 - X-射線能量散佈分析 29
(b) 原子吸收光譜 30
2.3-3 樣品影像形態及顆粒大小分析 : 30
(a) 場發射掃瞄式電子顯微鏡 30
(b) 穿透式電子顯微鏡 30
2.3-4 孔洞分佈與表面積之測定 31
2.3-5 擴散反射式紫外線-可見光光譜 33
2.3-6 傅立葉轉換紅外線光譜 33
2.3-7 電子順磁共振光譜 34
2.3-8 化學吸附 34
2.4 觸媒之催化反應測試 38
2.4-1 流式微反應系統 38
2.4-2 原位紅外線光譜 45
2.4-3 光催化反應 48
第三章 結果與討論 50
3.1 氧化鈦奈米管之製備與結構特性分析 50
3.2 氧化鈦奈米管擔體金屬觸媒之製備與結構特性分析
及催化性質 102
第四章 結論 135
參考文獻.. 137
附錄 - CO oxidation原始數據.. 150
dc.language.isozh-TW
dc.subject氧化鈦zh_TW
dc.subject奈米管zh_TW
dc.subject擔體金屬觸媒zh_TW
dc.subjectSupported Metal Catalystsen
dc.subjectTitanium Oxideen
dc.subjectNanotubeen
dc.title氧化鈦奈米管擔體金屬觸媒之製備及特性分析zh_TW
dc.titlePreparation and Characterization of Titanium Oxide Nanotube Supported Metal Catalystsen
dc.typeThesis
dc.date.schoolyear93-1
dc.description.degree博士
dc.contributor.oralexamcommittee梁文傑,劉春櫻,鄭淑芬,黃良平
dc.subject.keyword氧化鈦,奈米管,擔體金屬觸媒,zh_TW
dc.subject.keywordTitanium Oxide,Nanotube,Supported Metal Catalysts,en
dc.relation.page150
dc.rights.note有償授權
dc.date.accepted2004-10-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-93-1.pdf
  未授權公開取用
9.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved